• Publications
  • Influence
Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
TLDR
S sulfur hydride is investigated, and it is argued that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure, which raises hope for the prospects for achieving room-temperature super conductivity in other hydrogen-based materials.
Superconductivity at 250 K in lanthanum hydride under high pressures
TLDR
A lanthanum hydride compound at a pressure of around 170 gigapascals is found to exhibit superconductivity with a critical temperature of 250 kelvin, the highest critical temperature that has been confirmed so far in a superconducting material.
High Pressure Experimental Methods
I: HIGH PRESSURE APPARATUS II: PRESSURE SCALES AND THE EXPERIMENTAL ENVIRONMENT III: STUDIES AT HIGH PRESSURE
Conventional superconductivity at 190 K at high pressures
The highest critical temperature of superconductivity Tc has been achieved in cuprates: 133 K at ambient pressure and 164 K at high pressures. As the nature of superconductivity in these materials is
Single-bonded cubic form of nitrogen
TLDR
The polymeric nitrogen with the theoretically predicted cubic gauche structure (cg-N) represents a new class of single-bonded nitrogen materials with unique properties such as energy capacity: more than five times that of the most powerfully energetic materials.
Electronic and magnetic phase diagram of beta-Fe(1.01)Se with superconductivity at 36.7 K under pressure.
TLDR
The magnetic and electronic phase diagram of beta-Fe(1.01)Se is reported, which shows a marked change in volume at the same time as T(C) rises, owing to a collapse of the separation between the Fe(2)Se(2), and it is reported that at higher pressures, Fe(1)Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behaviour.
Transparent dense sodium
TLDR
Experimental observations of a pressure-induced transformation of Na into an optically transparent phase at ∼200 GPa are reported, attributing the emergence of this dense insulating state not to atom pairing, but to p–d hybridizations of valence electrons and their repulsion by core electrons into the lattice interstices.
Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering
TLDR
The results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of 119Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H1S.
Crystal Structure of the Superconducting Phase of Sulfur Hydride
TLDR
The crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal andsuperconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures are reported.
...
1
2
3
4
5
...