• Publications
  • Influence
Observation of high-energy astrophysical neutrinos in three years of IceCube data.
Results from an analysis with a third year of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8)  GeV cm-2 s-1 sr-1 per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7σ.
Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector
The presence of a high-energy neutrino flux containing the most energetic neutrinos ever observed is revealed, including 28 events at energies between 30 and 1200 TeV, although the origin of this flux is unknown and the findings are consistent with expectations for a neutRino population with origins outside the solar system.
Search for dark matter annihilations in the sun with the 79-string IceCube detector.
A search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope is performed, lowering the energy threshold and extending the search to the austral summer.
First observation of PeV-energy neutrinos with IceCube.
These two neutrino-induced events could be a first indication of an astrophysical neutrinos flux; the moderate significance, however, does not permit a definitive conclusion at this time.
Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube
The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutLrinos produced in distant astrophysical objects. A search for. greater than or similar to 100 TeV
Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert
A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by this association, we inve
Searches for Sterile Neutrinos with the IceCube Detector.
New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation.
Search for annihilating dark matter in the Sun with 3 years of IceCube data
We present results from an analysis looking for dark matter annihilation in the Sun with the IceCube neutrino telescope. Gravitationally trapped dark matter in the Sun’s core can annihilate into
Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data
We present an all-sky search for muon neutrinos produced during the prompt γ-ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos wou
Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube.
The analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky is extracted from data taken during 659.5 days of live time recorded between May 2010 and May 2012, and a fit for an astrophysical flux with an arbitrary spectral index is performed.