Learn More
Piwi-interacting RNAs (piRNAs) silence transposons in animal germ cells. piRNAs are thought to derive from long transcripts spanning transposon-rich genomic loci and to direct an autoamplification loop in which an antisense piRNA, bound to Aubergine or Piwi protein, triggers production of a sense piRNA bound to the PIWI protein Argonaute3 (Ago3). In turn,(More)
We suggest moment estimators for the parameters of a continuous time GARCH(1,1) process based on equally spaced observations. Using the fact that the increments of the COGARCH(1,1) process are strongly mixing with exponential rate, we show that the resulting estimators are consistent and asymptotically normal. We investigate the empirical quality of our(More)
Small interfering RNAs (siRNAs) direct RNA interference (RNAi) in eukaryotes. In flies, somatic cells produce siRNAs from exogenous double-stranded RNA (dsRNA) as a defense against viral infection. We identified endogenous siRNAs (endo-siRNAs), 21 nucleotides in length, that correspond to transposons and heterochromatic sequences in the somatic cells of(More)
The Rev protein of human immunodeficiency virus type 1 (HIV-1) facilitates the nuclear export of unspliced and partly spliced viral RNAs. Rev contains an RNA binding domain, required for interaction with HIV-1 RNA, and an effector domain, required for RNA-bound Rev to function. The Rev effector domain is believed to interact with a cellular cofactor(More)
Replication of RNA viruses, such as the human immunodeficiency virus (HIV), is dependent upon multiple specific interactions between viral RNAs and viral and cellular proteins. A small molecule that interferes specifically with one or more of these RNA-protein interactions could be an efficacious antiviral agent. Here we show that certain aminoglycoside(More)
We have used an iterative in vitro genetic selection to identify the important structural features of the viral RNA element bound by the Rev protein of human immunodeficiency virus type 1 (HIV-1). Functional Rev-binding RNAs were selected from a pool of 10(13) variants of the wild-type Rev-binding domain. Bases conserved among the binding species define a(More)
At the FASEB summer research conference on "Arf Family GTPases", held in Il Ciocco, Italy in June, 2007, it became evident to researchers that our understanding of the family of Arf GTPase activating proteins (ArfGAPs) has grown exponentially in recent years. A common nomenclature for these genes and proteins will facilitate discovery of biological(More)
Antiviral immunity requires recognition of viral pathogens and activation of cytotoxic and Th cells by innate immune cells. In this study, we demonstrate that hepatitis C virus (HCV) core and nonstructural protein 3 (NS3), but not envelope 2 proteins (E2), activate monocytes and myeloid dendritic cells (DCs) and partially reproduce abnormalities found in(More)
RNA molecules that can bind to the Rev protein of HIV-1 have been isolated from random sequence nucleic acid pools based on a minimal Rev-binding element (RBE) found within the Rev Responsive Element (RRE). While the selected sequences are related to the wild-type element, they also contain substitutions that allow them to bind Rev up to 10-fold better in(More)