Learn More
Hsp70 chaperones have been implicated in assisting protein folding of newly synthesized polypeptide chains, refolding of misfolded proteins, and protein trafficking. For these functions, the chaperones need to exhibit a significant promiscuity in binding to different sequences of hydrophobic peptide stretches. To characterize the structural basis of(More)
The emergence of multiple-drug-resistant (MDR) bacterial pathogens in hospitals (nosocomial infections) presents a global threat of growing importance, especially for Gram-negative bacteria with extended spectrum β-lactamase (ESBL) or the novel New Delhi metallo-β-lactamase 1 (NDM-1) resistance. Starting from the antibacterial peptide apidaecin 1b, we have(More)
Bacterial resistance against common antibiotics is an increasing health problem. New pharmaceuticals for the treatment of infections caused by resistant pathogens are needed. Small proline-rich antimicrobial peptides (PrAMPs) from insects are known to bind intracellularly to the conventional substrate binding cleft of the E. coli Hsp70 chaperone DnaK.(More)
Bacterial coenzyme B12-dependent 2-hydroxyisobutyryl-CoA mutase (HCM) is a radical enzyme catalyzing the stereospecific interconversion of (S)-3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA. It consists of two subunits, HcmA and HcmB. To characterize the determinants of substrate specificity, we have analyzed the crystal structure of HCM from Aquincola(More)
Based on the potent phosphodiesterase 10 A (PDE10A) inhibitor PQ-10, we synthesized 32 derivatives to determine relationships between their molecular structure and binding properties. Their roles as potential positron emission tomography (PET) ligands were evaluated, as well as their inhibitory potency toward PDE10A and other PDEs, and their metabolic(More)
Outer membrane (OM) β-barrel proteins composed of 12-18 β-strands mediate cellular entry of small molecules in Gram-negative bacteria. Small OM proteins with barrels of 10 strands or less are not known to transport small molecules. CarO (carbapenem-associated outer membrane protein) from Acinetobacter baumannii is a small OM protein that has been implicated(More)
Bacterial resistance against antibiotics is an increasing global health problem. In Gram-negative bacteria the low permeability of the outer membrane (OM) is a major factor contributing to resistance, making it important to understand channel-mediated small-molecule passage of the OM. Acinetobacter baumannii has five Occ (OM carboxylate channel) proteins,(More)
  • 1