M. V. Ramana Murthy

Learn More
The mushroom body is an insect brain structure required for olfactory learning. Its principal neurons, the Kenyon cells (KCs), form a large cell population. The neuronal populations from which their olfactory input derives (olfactory sensory and projection neurons) can be identified individually by genetic, anatomical, and physiological criteria. We ask(More)
Lipoprotein and endothelial lipases are members of the triglyceride lipase gene family. These genes are expressed in the brain, where the encoded proteins are fulfilling functions that have yet to be elucidated. In this study, we examined the distribution of their respective mRNAs in the C57BL/6 mouse brain by in situ hybridization. In control mice, we(More)
Many animal species, including insects, are capable of acoustic duetting, a complex social behavior in which males and females tightly control the rate and timing of their courtship song syllables relative to each other. The mechanisms underlying duetting remain largely unknown across model systems. Most studies of duetting focus exclusively on acoustic(More)
Innate behaviors are often executed in concert with accompanying physiological programs. How this coordination is achieved is poorly understood. Mating behavior and the transfer of sperm and seminal fluid (SSFT) provide a model for understanding how concerted behavioral and physiological programs are coordinated. Here we identify a male-specific neural(More)
Pumilio (Pum) is a translational repressor that binds selectively to target mRNAs and recruits Nanos (Nos) as a corepressor. In the larval neuromuscular system, Pum represses expression of the translation factor eIF-4E and the glutamate receptor subunit GluRIIA. Here, we show that Nos, like Pum, is expressed at the neuromuscular junction (NMJ) and in(More)
Whole-cell patch-clamp recordings provide exceptional access to spiking and synaptic neural activity. This method has been applied to neurons in the central nervous system of Drosophila and allows researchers the opportunity to study the function of their neurons of interest within the context of native circuits in a genetically tractable model system. In(More)
Acoustic communication in drosophilid flies is based on the production and perception of courtship songs, which facilitate mating. Despite decades of research on courtship songs and behavior in Drosophila, central auditory responses have remained uncharacterized. In this study, we report on intracellular recordings from central neurons that innervate the(More)
Whole-cell patch-clamp recording has been applied to neurons in the central nervous system of Drosophila, allowing researchers to study the function of neurons of interest within native circuits in a genetically tractable model system. Here, we present a method to expose neurons in the fly brain for such recording. The fly is inserted into an opening in a(More)
The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca(2+)-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domain's(More)
The generation of acoustic communication signals is widespread across the animal kingdom, and males of many species, including Drosophilidae, produce patterned courtship songs to increase their chance of success with a female. For some animals, song structure can vary considerably from one rendition to the next; neural noise within pattern generating(More)