M Tulio Núñez

Learn More
Reactive oxygen species (ROS) produced by the NADPH oxidase (NOX) complex play important physiological and pathological roles in neurotransmission and neurodegeneration, respectively. However, the contribution of ROS to the molecular mechanisms involved in neuronal polarity and axon elongation is not well understood. In this work, we found that loss of NOX(More)
Physiological levels of ROS support neurite outgrowth and axonal specification, but the mechanisms by which ROS are able to shape neurons remain unknown. Ca(2+), a broad intracellular second messenger, promotes both Rac1 activation and neurite extension. Ca(2+) release from the endoplasmic reticulum, mediated by both the IP3R1 and ryanodine receptor (RyR)(More)
Reactive oxygen species (ROS) produced by the NADPH oxidase (NOX) complex play important physiological and pathological roles in neurotransmission and neurodegeneration, respectively. However, the contribution of ROS to molecular mechanisms involved in neuronal polarity and axon elongation is not well understood. In this work, we found that loss of function(More)
  • 1