Learn More
Thermodynamic studies have demonstrated the central importance of a large negative heat capacity change (delta C degree assoc) in site-specific protein-DNA recognition. Dissection of the large negative delta C degree assoc and the entropy change of protein-ligand and protein-DNA complexation provide a thermodynamic signature identifying processes in which(More)
New computer programs, SurfRace and FastSurf, perform fast calculations of the solvent accessible and molecular (solvent excluded) surface areas of macromolecules. Program SurfRace also calculates the areas of cavities inaccessible from the outside. We introduce the definition of average curvature of molecular surface and calculate average molecular surface(More)
The water-accessible volumes, the amounts of all significant osmolytes, and the protein concentration in the cytoplasm of aerobically grown Escherichia coli K-12 have been determined as a function of the osmolarity of the minimal growth medium. The volume of cytoplasmic water (Vcyto) decreases linearly with increasing osmolarity from 2.23(+/- 0.12)(More)
Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an(More)
The sigma 70 subunit of E. coli RNA polymerase is required for sequence-specific recognition of promoter DNA. Genetic studies and sequence analysis have indicated that sigma 70 contains two specific DNA-binding domains that recognize the two conserved portions of the prokaryotic promoter. However, intact sigma 70 does not bind to DNA. Using C-terminal and(More)
This extension of the liquid hydrocarbon model seeks to quantify the thermodynamic contributions to protein stability from the removal of nonpolar and polar surface from water. Thermodynamic data for the transfer of hydrocarbons and organic amides from water to the pure liquid phase are analyzed to obtain contributions to the thermodynamics of folding from(More)
Exosomes are bioactive vesicles released from multivesicular bodies (MVB) by intact cells and participate in intercellular signaling. We investigated the presence of lipid-related proteins and bioactive lipids in RBL-2H3 exosomes. Besides a phospholipid scramblase and a fatty acid binding protein, the exosomes contained the whole set of phospholipases (A2,(More)
Effects of changes in intracellular ion concentrations on the interactions of Escherichia coli lac repressor with lac operator mutants and on the interactions of RNA polymerase with various promoters have been investigated in vivo. The intracellular ionic environment was reproducibly varied by changing the osmolality of the 4-morpholinepropanesulfonic acid(More)
The kinetics of interaction of Esigma(70) RNA polymerase (R) with the lambdaP(R) promoter (P) were investigated by filter binding over a broad range of temperatures (7.3-42 degrees C) and concentrations of RNA polymerase (1-123 nM) in large excess over promoter DNA. Under all conditions examined, the kinetics of formation of competitor-resistant complexes(More)
A strong-binding primary (O1) lac operator located 100 to 200 base-pairs (bp) upstream from a lac promoter control region reduces expression from a lac promoter controlled by a weaker-binding (Oc) lac operator between 3 and 20-fold on a multicopy plasmid in E. coli. We attribute this effect to loop formation in which a thermodynamically stable complex is(More)