Learn More
Yarrowia lipolytica is one of the most extensively studied nonconventional yeasts. Unfortunately, few methods for gene disruption have been reported for this yeast, and all of them are time-consuming and laborious. The functional analysis of unknown genes requires powerful disruption methods. Here, we describe such a new method for rapid gene disruption in(More)
New vector systems were developed for gene expression in Y. lipolytica. These plasmids contain: (a) as integration target sequences, either a rDNA region or the long terminal repeat zeta of the Y. lipolytica retrotransposon Ylt1; (b) the YlURA3 gene as selection marker for Y. lipolytica, either as the non-defective ura3d1 allele for single integration or(More)
We have identified five acyl coenzyme A (CoA) oxidase isozymes (Aox1 through Aox5) in the n-alkane-assimilating yeast Yarrowia lipolytica, encoded by the POX1 through POX5 genes. The physiological function of these oxidases has been investigated by gene disruption. Single, double, triple, and quadruple disruptants were constructed. Global Aox activity was(More)
We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140-5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains(More)
In order to get deeper insights into oxidative degradation of the hydrophobic substrates (HS) triglycerides and alkanes by yeasts, tagged mutants affected in these pathways were generated by random insertion of a mutagenesis cassette MTC into the genome of Yarrowia lipolytica. About 9.600 Ura+ transformants were screened in plate tests for utilization of(More)
The ACO3 gene, which encodes one of the acyl-CoA oxidase isoenzymes, was isolated from the alkane-utilizing yeast Yarrowia lipolytica as a 10 kb genomic fragment. It was sequenced and found to encode a 701-amino acid protein very similar to other ACOs, 67.5% identical to Y. lipolytica Aco1p and about 40% identical to S. cerevisiae Pox1p. Haploid strains(More)
In the lipolytic yeast Yarrowia lipolytica, the LIP2 gene was previously reported to encode an extracellular lipase. The growth of a Deltalip2 strain on triglycerides as sole carbon source suggest an alternative pathway for triglycerides utilisation in this yeast. Here, we describe the isolation and the characterisation of the LIP7 and LIP8 genes which were(More)
Viruses isolated from the yeast Yarrowia lipolytica possess a DNA-independent RNA polymerase activity which is inhibited by ethidium bromide and by sodium pyrophosphate but not by actinomycin D. RNA synthesis is maximum at pH 8.0 and at 30 degrees C. Newly synthesized RNA molecules are largely released from the particles, are single-stranded and are able to(More)
  • 1