Learn More
The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms/processes that control differentiation of vascular smooth muscle cells (SMC) during normal development and maturation of the vasculature, as well as how these mechanisms/processes are altered in vascular injury or disease. A major challenge in(More)
Alterations in the differentiated state of vascular smooth muscle cells (SMCs) are known to play a key role in vascular diseases, yet the mechanisms controlling SMC differentiation are still poorly understand. In this review, we discuss our present knowledge of control of SMC differentiation at the transcriptional level, pointing out some common themes,(More)
Changes in the differentiated state of smooth muscle cells (SMCs) play a key role in vascular diseases, yet the mechanisms controlling SMC differentiation are still largely undefined. We addressed the role of basic helix-loop-helix (bHLH) proteins in SMC differentiation by first determining the role of two E-box (CAnnTG) motifs, binding sites for bHLH(More)
Although a critical component of vascular disease is modulation of the differentiated state of vascular smooth muscle cells (SMC), the mechanisms governing SMC differentiation are relatively poorly understood. We have previously shown that E-boxes and the ubiquitously expressed class I basic helix-loop-helix (bHLH) proteins, including E2-2 and E12, are(More)
Identification of the regulators of smooth muscle specific gene expression is critical for understanding smooth muscle cell (SMC) differentiation and the alterations in SMC phenotype seen in vascular diseases. Previous studies have identified that a 2-bp mutation in a conserved cis-acting element (TGTTTATC) in the promoter of the chicken smooth muscle (SM)(More)
  • 1