Learn More
The yeast mitochondrial degradosome (mtEXO) is an NTP-dependent exoribonuclease involved in mitochondrial RNA metabolism. Previous purifications suggested that it was composed of three subunits. Our results suggest that the degradosome is composed of only two large subunits: an RNase and a RNA helicase encoded by nuclear genes DSS1 and SUV3, respectively,(More)
 Mutants of Saccharomyces cerevisiae that lack a functional MSS51 gene are respiratory deficient due to the absence of cytochrome c oxidase subunit 1 (Cox1p). It has been previously suggested, but not formally proven, that Mss51p is required for translational activation of COX1 mRNA, rather than being involved in a subsequent step in the synthesis of Cox1p(More)
The yeast Saccharomyces cerevisiae is likely to be the first organism for which a complete inventory of mitochondrial proteins and their functions can be drawn up. A survey of the 340 or so proteins currently known to be localised in yeast mitochondria reveals the considerable investment required to maintain the organelle's own genetic system, which itself(More)
Mammalian spermatogenesis shows a strict control of many specific molecular and cellular events. This control involves Sertoli cell-germ cell interaction, as well as a programmed performance of changes in chromatin structure and gene expression in the developing germ cells. In recent years, much knowledge about the functions of defined genes in(More)
GermOnline provides information and microarray expression data for genes involved in mitosis and meiosis, gamete formation and germ line development across species. The database has been developed, and is being curated and updated, by life scientists in cooperation with bioinformaticists. Information is contributed through an online form using free text,(More)
In mouse spermatogenesis, differentiating germ line cells initiate expression of specific genes at subsequent developmental steps. The Calmegin (Clgn) gene is first expressed in meiotic prophase, in primary spermatocytes, and encodes a protein that acts as a chaperone. To identify testis-specific transcription factors that control expression of the Clgn(More)
The use of high stringency selection systems commonly results in a strongly diminished number of stably transfected mammalian cell lines. Here we placed twelve different promoters upstream of an adjacent primary promoter and tested whether this might result in an increased number of colonies; this is in the context of a stringent selection system. We found(More)
The efficient establishment of high protein producing recombinant mammalian cell lines is facilitated by the use of a stringent selection system. Here, we describe two methods to create a stringent selection system based on the Zeocin resistance marker. First, we cloned increasingly longer stretches of DNA, encoding a range of 8-131 amino acids immediately(More)
The use of high stringency selection systems often results in the induction of very few recombinant mammalian cell lines, which limits the ability to isolate a cell line with favorable characteristics. The employment of for instance STAR elements in DNA constructs elevates the induced number of colonies and also the protein expression levels in these(More)
  • 1