M Schwertner

  • Citations Per Year
Learn More
We present a new method for setting a coverglass correction collar on an objective lens. Axial scans across the interface between the specimen volume and the slide are used together with a quantitative function of merit to determine the optimum setting of the correction collar. The method, which simplifies the adjustment for the user and reduces(More)
Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of(More)
Aberrations are known to severely compromise image quality in optical microscopy, especially when high numerical aperture (NA) lenses are used in confocal fluorescence microscopy (CFM) and two-photon microscopy (TPM). The method of adaptive optics may correct aberrations and restore diffraction limited operation. So far the problem of aberrations that occur(More)
Specimen-induced aberrations affect the imaging properties in optical 3D microscopy, especially when high numerical aperture lenses are used. Studies on aberrations are often properly concerned with the degradation of image quality such as compromised resolution or reduced signal intensity. Apart from these, aberration effects can also introduce geometric(More)
Wavefront aberrations caused by the refractive index structure of the specimen are known to compromise signal intensity and three-dimensional resolution in confocal and multiphoton microscopy. However, adaptive optics can measure and correct specimen-induced aberrations. For the design of an adaptive optics system, information on the type and amount of the(More)
  • 1