Learn More
A protocol is prescribed for clinical reference dosimetry of external beam radiation therapy using photon beams with nominal energies between 60Co and 50 MV and electron beams with nominal energies between 4 and 50 MeV. The protocol was written by Task Group 51 (TG-51) of the Radiation Therapy Committee of the American Association of Physicists in Medicine(More)
Since publication of the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report in 1995 (TG-43), both the utilization of permanent source implantation and the number of low-energy interstitial brachytherapy source models commercially available have dramatically increased. In addition, the National Institute of Standards and(More)
This document presents recommendations of the American Association of Physicists in Medicine (AAPM) for quality assurance of computed-tomography- (CT) simulators and CT-simulation process. This report was prepared by Task Group No. 66 of the AAPM Radiation Therapy Committee. It was approved by the Radiation Therapy Committee and by the AAPM Science Council.
The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also(More)
The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of.Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring(More)
Since publication of the 2004 update to the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report (TG-43U1), several new low-energy photon-emitting brachytherapy sources have become available. Many of these sources have satisfied the AAPM prerequisites for routine clinical use as of January 10, 2005, and are posted on the Joint(More)
Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene therapy to protect esophageal, pancreatic and bone marrow cells from radiation-induced genomic instability. Specifically, we measured the(More)
Since the development of the Radiation Therapy Oncology Group-Recursive Partitioning Analysis (RTOG-RPA) risk classes for high-grade glioma, radiation therapy in combination with temozolomide (TMZ) has become standard care. While this combination has improved survival, the prognosis remains poor in the majority of patients. Therefore, strong interest in(More)
The interplay between a mobile target and a dynamic multileaf collimator can compromise the accuracy of intensity-modulated radiation therapy (IMRT). Our goal in this study is to investigate the dosimetric effects caused by the respiratory motion during IMRT. A moving phantom was built to simulate the typical breathing motion. Different sizes of the gating(More)
OBJECT The recently introduced Leksell Gamma Knife (LGK) Perfexion is an entirely new system with a different beam geometry compared with the LGK 4C. The new Perfexion system has 192 cobalt-60 sources that are fixed on 8 sectors (each sector has 24 sources). Each sector can be moved independently of the others and can be set to 1 of 5 different positions: 3(More)