M. S. Ouyang

Learn More
Selection of a suitable solvent system is the first and foremost step for a successful counter-current chromatography (CCC) separation. In this paper, a thermodynamic model, nonrandom two-liquid segment activity coefficient model (NRTL-SAC) which uses four types of conceptual segments to describe the effective surface interactions for each solvent and(More)
Well-aligned and randomly grown multiwall nanotubes (MWNTs) fabricated by the radio-field-induced self-bias hot-filament chemical vapour deposition method demonstrate that the growth mechanisms are either ‘tip growth’ or ‘base growth’ depending on the size of the catalyst metal particles involved. The carbon nanotubes (CNTs) can also be successfully grown(More)
Metallic single-walled carbon nanotubes have been proposed to be good one-dimensional conductors. However, the finite curvature of the graphene sheet that forms the nanotubes and the broken symmetry due to the local environment may modify their electronic properties. We used low-temperature atomically resolved scanning tunneling microscopy to investigate(More)
In this paper, the adaptive speed control of induction motor drives using neural networks is presented. To obtain good tracking and regulating control characteristics, a digital twodegree-of-freedom (2DOF) controller is adopted and a design procedure is developed for systematically finding its parameters according to prescribed specifications. The(More)
Intramolecular junctions in single-walled carbon nanotubes are potentially ideal structures for building robust, molecular-scale electronics but have only been studied theoretically at the atomic level. Scanning tunneling microscopy was used to determine the atomic structure and electronic properties of such junctions in single-walled nanotube samples.(More)
Carbon nanotubes (CNTs) are successfully grown on alloy substrates made of copper and iron groups by hot-filament chemical vapor deposition method with self-bias induced by a radio-frequency-field. A precursor of the hydrogen etching of alloys to produce catalyst nanoparticles on the substrate surface is crucial to CNT growth. Successful CNT growth on(More)
In this work the electric discharge machining (EDM) implementing with multi-wall carbon nanotubes (MWCNT) as a miniscule electrode for pursuing precise surface modification was studied. The excellent upright growth of carbon nanotubes on copper based alloy substrates by a radio frequency (RF) assisted hot filament chemical vapor deposition (HFCVD) method(More)
Bunched and multi-circularly wrapped carbon nanotubes (CNT) are observed to grow on alloy substrates based on iron group metals and copper by a microwave enhanced hot-filament method with a dilute gas of ammonia at a proper RF self-bias. The grown size of CNTs embodied in the grain sizes of conducting bulk alloy catalysts such as Cu-Ni, Cu-Fe, Cu-Co, and(More)
  • 1