Learn More
Intimal hyperplasia at vascular anastomoses seems to be promoted by altered flow conditions and stress distributions within the anastomotic region. In order to gain deeper insight into postoperative disease processes, and subsequently, to contribute to the development of improved vascular reconstructions, detailed studies, also on local flow dynamics and(More)
The coronary arteries undergo large dynamic variations during each cardiac cycle due to their position on the beating heart. The local artery curvature varies significantly. In this study the influence of dynamic curvature on coronary artery hemodynamics is analyzed numerically. A realistic model of the bifurcation of the left anterior descending coronary(More)
In this work we introduce and discuss several mathematical models, based on partial differential equations, devised to study the coupled transport of macromolecules as low-density lipoproteins in the blood stream and in the arterial walls. These models are accurate provided that a suitable set of physical parameters characterizing the physical properties of(More)
The development and progress of distal anastomotic intimal hyperplasia seems to be promoted by altered flow conditions and intramural stress distributions at the region of the artery-graft junction of vascular bypass configurations. From clinical observations, it is known that intimal hyperplasia preferentially occurs at outflow anastomoses of prosthetic(More)
The present study illustrates a possible methodology to investigate drug elution from an expanded coronary stent. Models based on finite element method have been built including the presence of the atherosclerotic plaque, the artery and the coronary stent. These models take into account the mechanical effects of the stent expansion as well as the effect of(More)
In recipients of rotary blood pumps for cardiac assist, the pulsatility of arterial flow is considerably diminished. This influences the shear stress patterns and streamlines in the arterial bed, with potential influence on washout and plaque growth. These effects may be aggravated in the recirculation area of stenoses, and therefore, exclude patients with(More)
OBJECTIVE To evaluate the differences between non-circular shape of FloWatch-PAB and conventional pulmonary artery (PA) banding. METHODS Geometrical analysis. Conventional banding and FloWatch-PAB perimeters were plotted against cross-sections. Computational fluid dynamics (CFD) model. CFD compared non-circular FloWatch-PAB cross-sections with(More)
In recipients of rotary blood pumps for cardiac assist, the pulsatility of arterial flow is considerably diminished. This influences the shear stress patterns and streamlines in the arterial bed, with potential influence on washout and subsequent plaque growth. To study these effects, a three-dimensional computer simulation of the carotid bifurcation at(More)
  • 1