Learn More
Metastatic growth in breast cancer (BC) has been proposed as an exclusive property of cancer stem cells (CSCs). However, formal proof of their identity as cells of origin of recurrences at distant sites and the molecular events that may contribute to tumor cell dissemination and metastasis development are yet to be elucidated. In this study, we analyzed a(More)
The interaction between cancer cells and microenvironment has a critical role in tumor development and progression. Although microRNAs regulate all the major biological mechanisms, their influence on tumor microenvironment is largely unexplored. Here, we investigate the role of microRNAs in the tumor-supportive capacity of stromal cells. We demonstrated(More)
Prostate cancer is one of the leading causes of cancer-related death in men. Despite significant advances in prostate cancer diagnosis and management, the molecular events involved in the transformation of normal prostate cells into cancer cells have not been fully understood. It is generally accepted that prostate cancer derives from the basal compartment(More)
Cancer stem cell (SC) chemoresistance may be responsible for the poor clinical outcome of non-small-cell lung cancer (NSCLC) patients. In order to identify the molecular events that contribute to NSCLC chemoresistance, we investigated the DNA damage response in SCs derived from NSCLC patients. We found that after exposure to chemotherapeutic drugs NSCLC-SCs(More)
Lung cancer is the leading cause of tumor-related death. The lack of effective treatments urges the development of new therapeutic approaches able to selectively kill cancer cells. The connection between aberrant microRNA (miRNA – miR) expression and tumor progression suggests a new strategy to fight cancer by interfering with miRNA function. In this(More)
Although the development of bone metastasis is a major detrimental event in prostate cancer, the molecular mechanisms responsible for bone homing and destruction remain largely unknown. Here we show that loss of miR-15 and miR-16 in cooperation with increased miR-21 expression promote prostate cancer spreading and bone lesions. This combination of microRNA(More)
We have previously shown that estrogens binding to estrogen receptor (ER) α increase proliferation of Leydig tumor cells. Estrogens can also bind to G protein-coupled ER (GPER) and activation of this receptor can either increase or decrease cell proliferation of several tumor types. The aim of this study was to investigate GPER expression in R2C rat tumor(More)
  • 1