Learn More
Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page. Abstract: We investigate essential aspects of penetrometer design required to measure particle properties on(More)
Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C,(More)
We introduce a general purpose penetrator, fitted with a heater, for measuring temperature and thermal diffusivity. Due to its simplicity of deployment and operation the penetrator is well suited for remote deployment by spacecraft into a planetary regolith. Thermal measurements in planetary regoliths are required to determine the surface energy balance and(More)
We compare measurements made by two impact penetrometers of different sizes and with different tip shapes to further understand penetrometer design for performing pentrometry on an asteroid. To this end we re-visit the interpretation of data from the Huygens’ penetrometer, ACC-E, that impacted Titan’s surface. In addition we investigate the potential of a(More)
In recent years there have been remarkable advances in sonar technology, positioning capabilities, and computer processing power that have revolutionized the way we image the seafloor. The massive amounts of data produced by these systems present many challenges but also offer tremendous opportunities in terms of visualization and analysis. These systems(More)
[Abstract] Although there are various tools and approaches for evaluating proposed human missions to Mars, virtual prototyping with a suitable space flight simulator offers a number of benefits and advantages. These include the ability to experiment with interrelated system-level configurations and to explore alternate propulsion options. An ability to(More)
The high inertia, i.e. high mass and low speed, of a landing spacecraft has the potential to drive a penetrometer into the subsurface without the need for a dedicated deployment mechanism, e.g., during Huygens landing on Titan. Such a method could complement focused subsurface exploration missions, particularly in the low gravity environments of comets and(More)
The surface of Saturn's largest satellite--Titan--is largely obscured by an optically thick atmospheric haze, and so its nature has been the subject of considerable speculation and discussion. The Huygens probe entered Titan's atmosphere on 14 January 2005 and descended to the surface using a parachute system. Here we report measurements made just above and(More)