M. P. H. Davies

Learn More
PURPOSE The ability of microglial cells (MG) and macrophages (MAC) to release cytokines, induce apoptosis, as well as perform phagocytic functions suggests a possible role in wound healing following oxygen-induced injury. This study was performed to determine the temporal and spatial expression of F4/80 (F4/80+) positive microglia/macrophages (MG/MAC) in(More)
PURPOSE The present study investigates whether retinal neovascularization (NV) and apoptosis are altered in MCP-1-deficient ((-/-)) mice in the OIR model. METHODS Postnatal day (P) 7 MCP-1(-/-) and C57BL/6 (B6) mice were exposed to 75% oxygen for 5 days and then recovered in room air. Immunostaining was performed to localize macrophages/microglia within(More)
While it is well established that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various cell types, the role of TRAIL in regulation of retinal neovascularization (NV) has not been described. Here we determined the role of TRAIL in retinal NV during oxygen-induced retinopathy using TRAIL deficient ((-/-)) mice. TRAIL(More)
PURPOSE Consistent with clinical observations that posterior uveitis frequently involves the retinal vasculature and recent recognition of vascular heterogeneity, the hypothesis for this study was that retinal vascular endothelium was a cell population of unique molecular phenotype. METHODS Donor-matched cultures of primary retinal and choroidal(More)
PURPOSE Ephrin ligands and their Eph receptors are key regulators of endothelial cell (EC) proliferation, migration, adhesion, and repulsion during mammalian vascular development. The hypothesis was that these molecules also play a role in pathologic neovascularization (NV) in the mouse model of oxygen-induced retinopathy. METHODS C57BL/6 mice at(More)
PURPOSE To investigate whether the absence of the Fas-Fas ligand system of apoptosis regulation affects hyperoxia-induced retinal vaso-obliteration and retinal neovascularization in a mouse model of oxygen-induced retinopathy. METHODS C57BL/6 (B6) and congenic Fas ligand-deficient generalized lymphoproliferative disease (gld) mice were exposed to 75%(More)
PURPOSE Tumor necrosis factor alpha (TNF-alpha) has been shown to play an integral role in inflammation, apoptosis, and angiogenesis. We induced retinopathy in tumor necrosis factor receptor-deficient mice (TNFR-) in order to examine the role TNF-alpha plays in the pathogenesis of retinopathy of prematurity. METHODS On postnatal day (P) 7, TNFR-knockout(More)
PURPOSE The purpose of this study was to determine the retinal expression of angiogenic chemokines/cytokines in a mouse model of oxygen-induced retinopathy. METHODS C57BL/6 (B6) mice were exposed to 75% oxygen from postnatal day 7 (P7) to P12 and then recovered in room air. Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine(More)
PURPOSE Oxygen-induced retinopathy in the mouse is the standard experimental model of retinopathy of prematurity. Assessment of the pathology involves in vitro analysis of retinal vaso-obliteration and retinal neovascularization. The authors studied the clinical features of oxygen-induced retinopathy in vivo using topical endoscopy fundus imaging (TEFI), in(More)
PURPOSE EphB4 receptors and their ephrinB2 ligands are essential for vascular development, but also play a role in pathological neovascularization (NV). We previously reported that soluble (s) forms of EphB4 and ephrinB2 significantly reduced retinal NV in a model of oxygen-induced retinopathy. This study investigates if these molecules suppress retinal NV(More)