Learn More
Giardia lamblia trophozoites, like most intestinal parasitic protozoa, undergo fundamental biological changes to survive outside the intestine of their mammalian host by differentiating into infective cysts. This complex process entails the coordinated production, processing, and transport of cyst wall constituents for assembly into a protective cyst wall.(More)
This study explored the effects of vision and maturation on the characteristics of neuromuscular responses underlying balance control in both seated and standing children of five age groups (3 1/2-5 months, 8-14 months, 2-3 years, 4-6 years, and 7-10 years). A platform was used to unexpectedly disturb the child's balance in the anterior or posterior(More)
The protozoan Giardia lamblia is an obligate parasite of the mammalian small intestine. We studied the expression of a gene that encodes a protein component of the cyst wall, a complex structure assembled during the differentiation of trophozoites to cysts and which is critical to survival of the parasite outside its mammalian host. Transcripts from the(More)
Microbiologists have long been intrigued by the ability of parasitic organisms to adapt to changes in the environment. Since most parasites occupy several niches during their journey between vectors and hosts, they have developed adaptive responses which allow them to survive under adverse conditions. Therefore, the life cycles of protozoan and helminthic(More)
A fundamental characteristic of eukaryotic cells is the presence of membrane-bound compartments and membrane transport pathways in which the Golgi complex plays a central role in the selective processing, sorting, and secretion of proteins. The parasitic protozoan Giardia lamblia belongs to the earliest identified lineage among eukaryotes and therefore(More)
Antigenic variation in the parasitic protozoan Giardia lamblia was studied by characterizing the expression and genomic organization of a variant-specific surface protein (VSP) gene. Transcripts from this gene, vsp1267, were abundant in the cloned variant WB/1267, but undetectable in the parental clone from which WB/1267 was derived or in variant progeny of(More)
Giardia lamblia, like most human intestinal parasitic protozoa, sustains fundamental morphological and biochemical changes to survive outside the small intestine of its mammalian host by differentiating into an infective cyst. However, the stimulus that triggers this differentiation remains totally undefined. In this work, we demonstrate the induction of(More)
Giardia is an intestinal parasite that belongs to the earliest diverging branch of the eukaryotic lineage of descent. Giardia undergoes adaptation for survival outside the host's intestine by differentiating into infective cysts. Encystation involves the synthesis and transport of cyst wall constituents to the plasma membrane for release and extracellular(More)
Giardia lamblia undergoes surface antigenic variation. The variant-specific surface proteins (VSPs) of isolate WB are cysteine-rich, can vary dramatically in size, contain Cys-X-X-Cys motifs, and are differentially expressed. GS/M(H7) is a Giardia clone from a different isolate which expresses a VSP epitope not found in WB. The VSP gene encoding this(More)
We studied gene expression in the ancient eukaryote, Giardia lamblia, by taking advantage of assays developed recently in our laboratory, which allow new genetic analyses of this organism. We examined the transcription of a 2.2-kilobase segment of the Giardia genome that contains the glutamate dehydrogenase (GDH) gene and a portion of a second open reading(More)