M. Moretti

Learn More
—We discuss some theoretical models for vital signs monitoring by using a UWB radar. Focusing attention on the respiration and heartbeat signals, we show the impact of relevant parameters, like the sampling time interval, on the ability to extract the desired signal parameters from the waveforms elaborated at the receiver. The role of the UWB pulse shape is(More)
We present an integrated experimental-computational mechanobiology model of chondrogenesis. The response of human articular chondrocytes to culture medium perfusion, versus perfusion associated with cyclic pressurisation, versus non-perfused culture, was compared in a pellet culture model, and multiphysic computation was used to quantify oxygen transport(More)
Bone metastases arise in nearly 70% of patients with advanced breast cancer, but the complex metastatic process has not been completely clarified yet. RANKL/RANK/OPG pathway modifications and the crosstalk between metastatic cells and bone have been indicated as potential drivers of the process. Interactions between tumor and bone cells have been studied in(More)
Tendon ruptures are a great burden in clinics. Finding a proper graft material as a substitute for tendon repair is one of the main challenges in orthopaedics, for which the requirement of a biological scaffold would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon-derived matrix increasingly(More)
We analyzed specific features of chondrocytes as cellular yield, cell doubling rates and the dependence between these parameters and patient-related data in a set of 211 osteoarthritic (OA) patients undergoing total joint replacement. For each patient the data available were joint type, age and gender. Knee samples chosen randomly among all biopsies were(More)
Articular cartilage has poor healing ability and cartilage injuries often evolve to osteoarthritis. Cell-based strategies aiming to engineer cartilaginous tissue through the combination of biocompatible scaffolds and articular chondrocytes represent an alternative to standard surgical techniques. In this context, perfusion bioreactors have been introduced(More)
The purpose of this study was to measure chondrocytes detachment from cellularized constructs cultured in a perfusion bioreactor, and to evaluate the effect of different scaffold coatings on cell adhesion under a fixed flow rate. The scaffolds were polyurethane foams, treated to promote cell attachment and seeded with human chondrocytes. In a preliminary(More)
Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk(More)
Large bone defects still represent a major burden in orthopedics, requiring bone-graft implantation to promote the bone repair. Along with autografts that currently represent the gold standard for complicated fracture repair, the bone tissue engineering offers a promising alternative strategy combining bone-graft substitutes with osteoprogenitor cells able(More)
In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of(More)