Learn More
Most previous models of populations mixed for reproductive mode have omitted important local interactions between sexual and asexual individuals. We propose a cellular automaton model where local rules focus on fertilization and colonization. This model produces rich sets of data which are then studied by means of spatial statistics. Results point to the(More)
In gynodioecious populations of flowering plants females and hermaphrodites coexist. Gynodioecy is widespread and occurs in both asexual and sexual species but does not admit a satisfactory explanation from classical sex ratio theory. In sexual populations male fertility restoring genes have evolved to counter non-nuclear male sterility mutations. In(More)
When a process modelling the availability of gametes is included explicitly in population models a critical depensation or Allee effect usually results. Non-spatial models cannot describe clumping and so small populations must be assumed very diffuse. Consequently individuals in small populations experience low contact rates and so reproduction is limited.(More)
The endosperm of the flowering plant mediates the supply of maternal resources for embryogenesis. An endosperm formed in sexual reproduction between diploid parents is typically triploid, with a 2 : 1 ratio of maternal genetic material (denoted as 2m : 1p). Variation from this ratio affects endosperm size, indicating parent-specific expression of genes(More)
Estimates of leaf size and asymmetry for individual trees are often obtained using sample sizes that are too small to take into account the possibility that size and asymmetry may be affected by the position of the leaf on the tree. This issue was addressed by exploring variation in leaf size and asymmetry within an individual of Alder (Alnus glutinosa). We(More)