Learn More
Mesenchymal stem cells (MSCs) can be isolated from different adult sources and, even if the minimal criteria for defining MSCs have been reported, the scientific question about the potential distinctions among MSCs derived from different sources is still open. In particular, it is debated whether MSCs of different origin have the same grade of stemness or(More)
Mesenchymal stem cells (MSCs) are promising tools for studying the mechanisms of development and for the regeneration of injured tissues. Correct selection of the MSCs source is crucial in order to obtain a more efficient treatment and, in this respect Periosteum-Derived Cells (PDPCs) may represent an interesting alternative to bone marrow MSCs for(More)
The implantation of chondrocytes, seeded on matrices such as hyaluronic acid or collagen membranes, is a method that is being widely used for the treatment of chondral defects. The aim of the present study was to evaluate the distribution, viability and phenotype expression of the cells seeded on a collagen membrane just at the time of the implantation.(More)
The aim of this work was the preparation and characterization of scaffolds with mechanical and functional properties able to regenerate bone. Porous scaffolds made of chitosan/gelatin (POL) blends containing different amounts of a bioactive glass (CEL2), as inorganic material stimulating biomineralization, were fabricated by freeze-drying. Foams with(More)
The present review article is intended to direct attention to the technological advances made in the 2010-2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by(More)
Bone extracellular matrix (ECM) is a natural composite made of collagen and mineral hydroxyapatite (HA). Dynamic cell-ECM interactions play a critical role in regulating cell differentiation and function. Understanding the principal ECM cues promoting osteogenic differentiation would be pivotal for both bone tissue engineering and regenerative medicine.(More)
BACKGROUND Stem cells isolated from amniotic fluid are known to be able to differentiate into different cells types, being thus considered as a potential tool for cellular therapy of different human diseases. In the present study, we report a novel single step protocol for the osteoblastic differentiation of human amniotic fluid cells. RESULTS The(More)
Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative(More)
There is a great deal of interest in the understanding of possible age-related changes in Mesenchymal Stem Cells in view of their use for regenerative medicine applications. Given to the outmost standing of periosteum in bone biology and to probe data for a cell-based therapy promoting graft osseointegration in the elderly, we tried to identify specific(More)
Stem cells from human dental pulp have been considered as an alternative source of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages. Recently, polysaccharide based hydrogels have become especially attractive as matrices for the repair and regeneration of a wide variety of tissues and organs. The(More)