Learn More
In this paper we present several web-based tools to identify conserved patterns in sequences. In particular we present details on the functionality of PROMO version 2.0, a program for the prediction of transcription factor binding site in a single sequence or in a group of related sequences and, of MALGEN, a tool to visualize sequence correspondences among(More)
A large number of genes is shared by all living organisms, whereas many others are unique to some specific lineages, indicating their different times of origin. The availability of a growing number of eukaryotic genomes allows us to estimate which mammalian genes are novel genes and, approximately, when they arose. In this article, we classify human genes(More)
Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is associated with three human tumors, Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. KSHV encodes a number of homologs of cellular proteins involved in the cell cycle, signal transduction, and modulation of the host immune response. Of the virus(More)
Amino acid tandem repeats are found in a large number of eukaryotic proteins. They are often encoded by trinucleotide repeats and exhibit high intra- and interspecies size variability due to the high mutation rate associated with replication slippage. The extent to which natural selection is important in shaping amino acid repeat evolution is a matter of(More)
BACKGROUND It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the(More)
Amino acid tandem repeats, also called homopolymeric tracts, are extremely abundant in eukaryotic proteins. To gain insight into the genome-wide evolution of these regions in mammals, we analyzed the repeat content in a large data set of rat-mouse-human orthologs. Our results show that human proteins contain more amino acid repeats than rodent proteins and(More)
Genomes contain a large number of genes that do not have recognizable homologues in other species and that are likely to be involved in important species-specific adaptive processes. The origin of many such "orphan" genes remains unknown. Here we present the first systematic study of the characteristics and mechanisms of formation of primate-specific orphan(More)
BACKGROUND Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated(More)
Information about the genomic coordinates and the sequence of experimentally identified transcription factor binding sites is found scattered under a variety of diverse formats. The availability of standard collections of such high-quality data is important to design, evaluate and improve novel computational approaches to identify binding motifs on promoter(More)