M. M. T. Loy

Learn More
ZnO tetrapods and nanowires were fabricated by a simple method of thermal evaporation of pure Zn powder in the air. These nanostructures, formed in different temperature regions of the same apparatus, displayed distinct photoluminescence (PL) characteristics. Spatially resolved PL measurements on legs of individual tetrapods show that the green luminescence(More)
We demonstrate a simple and efficient method for producing ultrathin Bessel ('non-diffracting') light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of(More)
We describe the apparatus of a dark-line two-dimensional (2D) magneto-optical trap (MOT) of (85)Rb cold atoms with high optical depth (OD). Different from the conventional configuration, two (of three) pairs of trapping laser beams in our 2D MOT setup do not follow the symmetry axes of the quadrupole magnetic field: they are aligned with 45° angles to the(More)
We report a robust two-color method for super-resolution localization microscopy. Two-dye combination of Alexa647 and Alexa750 in an imaging buffer containing COT and using TCEP as switching regent provides matched and balanced switching characteristics for both dyes, allowing simultaneous capture of both on a single camera. Active sample locking stabilizes(More)
We report the direct observation of optical precursors of heralded single photons with step- and square-modulated wave packets passing through cold atoms. Using electromagnetically induced transparency and the slow-light effect, we separate the single-photon precursor, which always travels at the speed of light in vacuum, from its delayed main wave packet.(More)
We report the piezotronic effects on the photoluminescence (PL) properties of bent ZnO nanowires (NWs). We find that the piezoelectric field largely modifies the spatial distribution of the photoexcited carriers in a bent ZnO NW. This effect, together with strain-induced changes in the energy band structure due to the piezoresistive effects, results in a(More)
We report an experimental demonstration of optimal storage and retrieval of heralded single-photon wave packets using electromagnetically induced transparency (EIT) in cold atoms at a high optical depth. We obtain an optimal storage efficiency of (49 ± 3)% for single-photon waveforms with a temporal likeness of 96%. Our result brings the EIT quantum(More)
We demonstrate coherent control of single-photon absorption and reemission in a two-level cold atomic ensemble. This is achieved by interfering the incident single-photon wave packet with the emission (or scattering) wave. For a photon with an exponential growth waveform with a time constant equal to the excited-state lifetime, we observe that the(More)
We experimentally investigate optical storage with electromagnetically induced transparency in a dense cold (85)Rb atomic ensemble. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency has a saturation value of 50% as OD>50. Our result is consistent with that obtained from hot vapor cell experiments.