M. M. Savalani

Learn More
The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic(More)
The selective laser sintering (SLS) technique was used to manufacture hydroxyapatite-reinforced polyethylene and polyamide composites as potential customized maxillofacial implants. In vitro tests were carried out to assess cellular responses, in terms of cell attachment, morphology, proliferation, differentiation, and mineralized nodule formation, using(More)
Selective laser sintering (SLS), which is a additive rapid manufacturing technique, it is capable of producing the required product directly and automatically from a 3D computer model representation, have been selected to build implant and scaffold structures using composite materials consisting of a polymer and a bioactive ceramic. Hydroxyapatite (HA), a(More)
Selective laser sintering (SLS) has been investigated for the production of bioactive implants and tissue scaffolds using composites of high-density polyethylene (HDPE) reinforced with hydroxyapatite (HA) with the aim of achieving the rapid manufacturing of customized implants. Single-layer and multilayer block specimens made of HA–HDPE composites with 30(More)
Hydroxyapatite, a ceramic with which natural bone inherently bonds, has been incorporated into a polymer matrix to enhance the bioactivity of implant materials. In order to manufacture custom-made bioactive implants rapidly, selective laser sintering has been investigated to fabricate hydroxyapatite and polyamide composites and their properties(More)
Selective laser sintering (SLS) is a manufacturing technique which enables the final product to be made directly and rapidly, without tooling or additional machining. For biomedical applications, SLS permits the fabrication of implants and scaffolds with complex geometry accurately and economically. In this study, hydroxyapatite-reinforced polyethylene and(More)
Recent years have seen various rapid prototyping (RP) processes such as fused deposition modelling (FDM) and three-dimensional printing being used for fabricating prototypes, leading to shorter product development times and less human intervention. The literature reveals that the properties of RP built parts such as surface roughness, strength, dimensional(More)
Selective laser sintering (SLS) has been investigated for the production of bioactive implants and tissue scaffolds using composites of high-density polyethylene (HDPE) reinforced with hydroxyapatite (HA) with the aim of achieving the rapid manufacturing of customized implants. Single-layer and multilayer block specimens made of HA-HDPE composites with 30(More)
Traditional in vivo devices fabricated to be used as implantation devices included sutures, plates, pins, screws, and joint replacement implants. Also, akin to developments in regenerative medicine and drug delivery, there has been the pursuit of less conventional in vivo devices that demand complex architecture and composition, such as tissue scaffolds.(More)
  • 1