Learn More
Electric fish of the genus Sternopygus produce a sinusoidal electric organ discharge (EOD) of low frequencies in males, high frequencies in females, and overlapping and intermediate frequencies in juveniles. Correspondingly, the cells of the electric organ, the electrocytes, generate action potentials which are of long duration in mature males, short(More)
Many species of electric fish emit sexually dimorphic electrical signals that are used in gender recognition. In Sternopygus, mature females produce an electric organ discharge (EOD) that is higher in frequency and shorter in pulse duration than that of mature males. EOD pulse duration is determined by ion currents in the electrocytes, and androgens(More)
The electric organ cells of Sternopygus generate action potentials whose durations vary over a fourfold range. This variation in action potential duration is the basis for individual variation in a communication signal. Thus, action potential duration must be precisely regulated in these cells. We had observed previously that the inactivation kinetics of(More)
Premotor interneurons involved in the abdominal positioning behaviors of the crayfish, Procambarus clarkii, were studied intracellularly, along with motoneuron activity, in semi-intact preparations during episodes of fictive behavior. Each impaled cell was tested by injecting depolarizing current and examining the motor output. If a response was evoked then(More)
  • 1