M. L. Greaser

Learn More
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary(More)
A sodium dodecyl sulfate-discontinuous polyacrylamide gel electrophoresis system for separation and quantitation of low-molecular-weight (75 to 10K Da) proteins from single muscle fibers is described. Slab gels (0.75 mm thick) were stained using an improved silver-stain technique which does not require photographic fixers in order to achieve low-level(More)
Familial hypertrophic cardiomyopathy (FHC) is an inherited autosomal dominant disease caused by mutations in sarcomeric proteins. Among these, mutations that affect myosin binding protein-C (MyBP-C), an abundant component of the thick filaments, account for 20% to 30% of all mutations linked to FHC. However, the mechanisms by which MyBP-C mutations cause(More)
It has long been known that microtubule depletion causes axons to retract in a microfilament-dependent manner, although it was not known whether these effects are the result of motor-generated forces on these cytoskeletal elements. Here we show that inhibition of the motor activity of cytoplasmic dynein causes the axon to retract in the presence of(More)
The Ca2+ sensitivities of the rate constant of tension redevelopment (ktr; Brenner, B., and E. Eisenberg. 1986. Proceedings of the National Academy of Sciences. 83:3542-3546) and isometric force during steady-state activation were examined as functions of myosin light chain 2 (LC2) phosphorylation in skinned single fibers from rabbit and rat fast-twitch(More)
Passive tension in striated muscles derives primarily from the extension of the giant protein titin. However, several studies have suggested that, in cardiac muscle, interactions between titin and actin might also contribute to passive tension. We expressed recombinant fragments representing the subdomains of the extensible region of cardiac N2B titin(More)
Titin (also known as connectin) is a giant protein that spans half of the striated muscle sarcomere. In the I-band titin extends as the sarcomere is stretched, developing what is known as passive force. The I-band region of titin contains tandem Ig segments (consisting of serially linked immunoglobulin-like domains) with the unique PEVK segment in between(More)
beta-Adrenergic stimulation of cardiac muscle activates protein kinase A (PKA), which is known to phosphorylate proteins on the thin and thick filaments of the sarcomere. Cardiac muscle sarcomeres contain a third filament system composed of titin, and here we demonstrate that titin is also phosphorylated by the beta-adrenergic pathway. Titin phosphorylation(More)
Normal cardiac function requires dynamic modulation of contraction. beta1-adrenergic-induced protein kinase (PK)A phosphorylation of cardiac myosin binding protein (cMyBP)-C may regulate crossbridge kinetics to modulate contraction. We tested this idea with mechanical measurements and echocardiography in a mouse model lacking 3 PKA sites on cMyBP-C, ie,(More)
The electrophoretic separation of high-molecular-weight proteins (> 500 kDa) using polyacrylamide is difficult because gels with a large enough pore size for adequate protein mobility are mechanically unstable. A 1% vertical sodium dodecyl sulfate (SDS)-agarose gel electrophoresis (VAGE) system has been developed that allows titin (a protein with the(More)