Learn More
Membrane cofactor protein (MCP; CD46) is a widely distributed C3b/C4b-binding cell surface glycoprotein which serves as an inhibitor of complement activation on host cells. The protein has been purified, multiple cDNAs cloned and sequenced, and the genomic organization determined. MCP belongs to a family known as the regulators of complement activation(More)
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy with manifestations of hemolytic anemia, thrombocytopenia, and renal impairment. Genetic studies have shown that mutations in complement regulatory proteins predispose to non-Shiga toxin-associated HUS (non-Stx-HUS). We undertook genetic analysis on membrane cofactor protein (MCP), complement(More)
Membrane cofactor protein (MCP; CD46) is a widely expressed type 1 transmembrane glycoprotein that inhibits complement activation on host cells. It also is a receptor for several pathogens including measles virus, Streptococcus pyogenes, Neisseria gonorrhea, and Neisseria meningitidis. That MCP may have signaling capability was suggested by its microbial(More)
Membrane cofactor protein (MCP; CD46) is a widely expressed transmembrane complement regulator. Like factor H it inhibits complement activation by regulating C3b deposition on targets. Factor H mutations occur in 10-20% of patients with hemolytic uremic syndrome (HUS). We hypothesized that MCP mutations could predispose to HUS, and we sequenced MCP coding(More)
The 51 human adenovirus serotypes are divided into six species (A to F). Adenovirus serotypes from all species except species B utilize the coxsackie-adenovirus receptor for attachment to host cells in vitro. Species B adenoviruses primarily cause ocular and respiratory tract infections, but certain serotypes are also associated with renal disease. We have(More)
Atypical hemolytic uremic syndrome (aHUS) is a disease of complement dysregulation. In approximately 50% of patients, mutations have been described in the genes encoding the complement regulators factor H, MCP, and factor I or the activator factor B. We report here mutations in the central component of the complement cascade, C3, in association with aHUS.(More)
The complement system has developed a remarkably simple but elegant manner of regulating itself. It has faced and successfully dealt with how to facilitate activation on a microbe while preventing the same on host tissue. It solved this problem primarily by creating a series of secreted and membrane-regulatory proteins that prevent two highly undesirable(More)
The complement system, by virtue of its dual effector and priming functions, is a major host defense against pathogens. Flavivirus nonstructural protein (NS)-1 has been speculated to have immune evasion activity, because it is a secreted glycoprotein, binds back to cell surfaces, and accumulates to high levels in the serum of infected patients. Herein, we(More)
Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically(More)
Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle-age onset. In nine families, we identified heterozygous C-terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease activity but lose normal perinuclear localization. These data have(More)