Learn More
INTRODUCTION Recently, a non-invasive, continuous ventricular stroke volume monitoring system using skin electrodes has been developed. In contrast to impedance-based methods, the new technique (ventricular field recognition) enables measurement of changes in ventricular volume. A prototype using this new method was built (the hemologic cardiac profiler,(More)
Recent studies show that the presence of fatty lesions in the atherosclerotic vessel wall is a risk factor for acute occlusion of blood vessels. Although fat has a high electrical resistivity, existing impedance catheter systems cannot be used for detection of these lesions because artifacts owing to impedance variations in the extravascular surroundings(More)
Proton resonance frequency shift-based MR thermometry (MRT) is hampered by temporal magnetic field changes. Temporal changes in the magnetic susceptibility distribution lead to nonlocal field changes and are, therefore, a possible source of errors. The magnetic volume susceptibility of tissue is temperature dependent. For water-like tissues, this dependency(More)
OBJECTIVE The accuracy of bioimpedance stroke volume index (SVI) is questionable as studies report inconsistent results. It remains unclear whether the algorithms alone are responsible for these findings. We analyzed the raw impedance data with three algorithms and compared bioimpedance SVI to transpulmonary thermodilution (SVI(TD)). DESIGN AND SETTING(More)
BACKGROUND Irreversible electroporation (IRE) with needle electrodes is being explored as treatment option in locally advanced pancreatic cancer. Several studies have shown promising results with IRE needles, positioned around the tumor to achieve tumor ablation. Disadvantages are the technical difficulties for needle placement, the time needed to achieve(More)
BACKGROUND In this paper, a new method is presented that combines mechanical compliance effects with Poiseuille flow and push-out effects ("dead volume") in one single mathematical framework for calculating dosing errors in multi-infusion set-ups. In contrast to existing numerical methods, our method produces explicit expressions that illustrate the(More)
BACKGROUND In this paper a new non-invasive, operator-free, continuous ventricular stroke volume monitoring device (Hemodynamic Cardiac Profiler, HCP) is presented, that measures the average stroke volume (SV) for each period of 20 seconds, as well as ventricular volume-time curves for each cardiac cycle, using a new electric method (Ventricular Field(More)
  • 1