M J Attisha

Learn More
The Cryogenic Dark Matter Search (CDMS) is an experiment to detect weakly interacting massive particles (WIMPs), which may constitute the universe's dark matter, based on their interactions with Ge and Si nuclei. We report the results of an analysis of data from the first two runs of CDMS at the Soudan Underground Laboratory in terms of spin-dependent(More)
We report the first results from a search for weakly interacting massive particles (WIMPs) in the Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory. Four Ge and two Si detectors were operated for 52.6 live days, providing 19.4 kg d of Ge net exposure after cuts for recoil energies between 10 and 100 keV. A blind analysis was(More)
We report results from the Cryogenic Dark Matter Search at the Soudan Underground Laboratory (CDMS II) featuring the full complement of 30 detectors. A blind analysis of data taken between October 2006 and July 2007 sets an upper limit on the weakly interacting massive particle (WIMP) nucleon spin-independent cross section of 6.6x10;{-44} cm;{2}(More)
Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of the(More)
The Cryogenic Dark Matter Search (CDMS-II) employs low-temperature Ge and Si detectors to seek weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei. Simultaneous measurements of both ionization and phonon energy provide discrimination against interactions of background particles. For recoil energies above 10(More)
We report first results from the Cryogenic Dark Matter Search (CDMS II) experiment running with its full complement of 30 cryogenic particle detectors at the Soudan Underground Laboratory. This report is based on the analysis of data acquired between October 2006 and July 2007 from 15 Ge detectors (3.75 kg), giving an effective exposure of 121.3 kg-d(More)
Presently the CDMS-II collaboration's Weakly Interacting Massive Particle (WIMP) search at the Soudan Underground Laboratory sets the most stringent exclusion limits of any WIMP cold dark matter direct-detection experiment. To extend our reach further, to WIMP-nucleon cross-sections in the range 10 À46 À 10 À44 cm 2 , we propose SuperCDMS, which would take(More)
Data taken during the final shallow-site run of the first tower of the Cryogenic Dark Matter Search (CDMS II) detectors have been reanalyzed with improved sensitivity to small energy depositions. Four ∼224 g germanium and two ∼105 g silicon detectors were operated at the Stanford Underground Facility (SUF) between December 2001 and June 2002, yielding 118(More)
We present the results of the first two data runs of the Cryogenic Dark Matter Search at Soudan Underground Laboratory. These data exclude substantial new parameter space for both spin-independent and spin-dependent WIMP–nucleon interactions within the standard halo model.