Learn More
EnvZ, a histidine kinase/phosphatase in Escherichia coli, responds to the osmolarity changes in the medium by regulating the phosphorylation state of the transcription factor OmpR, which controls the expression levels of outer membrane porin proteins OmpF and OmpC. Although both ompR and envZ genes are located on the ompB locus under the control of the ompB(More)
During cellular adaptation to low temperature, Escherichia coli transiently synthesizes the major cold-shock protein CspA. It was found that adaptation to cold shock is blocked when the 143-base sequence of the 5' untranslated region (5' UTR) of the cspA mRNA is overproduced. The overproduction of this UTR at 15 degrees C caused the synthesis of not only(More)
Bacteria live in capricious environments, in which they must continuously sense external conditions in order to adjust their shape, motility and physiology. The histidine-aspartate phosphorelay signal-transduction system (also known as the two-component system) is important in cellular adaptation to environmental changes in both prokaryotes and lower(More)
When beta-lactamase was fused with the signal peptide plus the amino-terminal 9 amino acid residues of the major outer membrane lipoprotein, the resultant lipo-beta-lactamase (LL-1) was shown to be localized to the outer membrane. However, when the 9 residue sequence was replaced with the amino-terminal 12 residue sequence of lipoprotein-28, an inner(More)
PCR reactions were carried out on the genomic DNA of M. xanthus, a soil bacterium capable of differentiation to form fruiting bodies, using oligonucleotides representing highly conserved regions of eukaryotic protein serine/threonine kinases. A gene (pkn1) thus cloned contains an ORF of 693 amino acid residues whose amino-terminal domain shows significant(More)
In prokaryotes, the toxin-antitoxin systems are thought to play important roles in growth regulation under stress conditions. In the E. coli MazE-MazF system, MazF toxin functions as an mRNA interferase cleaving mRNAs at ACA sequences to inhibit protein synthesis leading to cell growth arrest. Myxococcus xanthus is a bacterium displaying multicellular(More)
Ribosome-binding factor A (RbfA) from Escherichia coli is a cold-shock adaptation protein. It is essential for efficient processing of 16S rRNA and is suspected to interact with the 5'-terminal helix (helix I) of 16S rRNA. RbfA is a member of a large family of small proteins found in most bacterial organisms, making it an important target for structural(More)
CspA, CspB, and CspG, the major cold shock proteins of Escherichia coli, are dramatically induced upon temperature downshift. In this report, we examined the effects of kanamycin and chloramphenicol, inhibitors of protein synthesis, on cold shock inducibility of these proteins. Cell growth was completely blocked at 37 degrees C in the presence of kanamycin(More)
Most secretory proteins in both prokaryotic and eukaryotic cells are synthesized from a precursor with an amino-terminal extension of 20 to 25 amino acid residues called a signal peptide. These signal peptides are removed during translocation of the secretory proteins across the membrane. When two precursor structures are fused, the internalized second(More)
MicroRNAs (miRNAs), which are non-coding RNAs 18-25 nt in length, regulate a variety of biological processes, including vertebrate development. To identify new species of miRNA and to simultaneously obtain a comprehensive quantitative profile of small RNA expression in mouse embryos, we used the massively parallel signature sequencing technology that(More)