M Ibrahim Dar

Learn More
In the past few years, organic-inorganic halide perovskites have rapidly emerged as promising materials for photovoltaic applications, but simultaneously achieving high performance and long-term stability has proved challenging. Here, we show a one-step solution-processing strategy using phosphonic acid ammonium additives that results in efficient(More)
Four center symmetrical star-shaped hole transporting materials (HTMs) comprising planar triazatruxene core and electron-rich methoxy-engineered side arms have been synthesized and successfully employed in (FAPbI3)0.85(MAPbBr3)0.15 perovskite solar cells. These HTMs are obtained from relatively cheap starting materials by adopting facile preparation(More)
Highly ordered 1D TiO2 nanotube arrays are fabricated and applied as nanocontainers and electron transporting material in CH3 NH3 PbI3 perovskite solar cells. The optimized device shows a power conversion efficiency of 14.8%, and improved stability under an illumination of 100 mW cm(-2). This is the best result based on 1D TiO2 nanostructures so far.
We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for(More)
The typical annual expenditure for patients requiring continuous hemofiltration (CHF) is high. To audit the benefit of this expensive treatment, the outcome of 48 consecutive patients (34 men, 14 women; mean age, 65 years) requiring hemofiltration for acute renal failure was analyzed during a period of 24 months. The operations performed were 26 CABG, 8(More)
A tailored optimization of perovskite solar cells requires a detailed understanding of the processes limiting the device efficiency. Here, we study the role of the hole transport layer (HTL) spiro-MeOTAD and its thickness in a mesoscopic TiO2-based solar cell architecture. We find that a sufficiently thick (200 nm) HTL not only increases the charge carrier(More)
As the photovoltaic performance of a device is strongly influenced by the morphology of perovskite, achieving precise control over the crystal formation of organic-inorganic halide perovskites synthesized in the ambience of chloride ions has garnered much attention. Although the resulting morphology dictates the performance of the device considerably, the(More)
We investigate two different types of TiO2 blocking layer (BL) deposition techniques commonly used in solid-state methylammonium lead triiodide perovskite (MaPbI3)-based solar cells. Although these BLs lead to similar photovoltaic device performance, their structure and blocking capability is actually very different. In one case, the "blocking" layer is(More)
We report the use of Y(3+)-substituted TiO2 (0.5%Y-TiO₂) in solid-state mesoscopic solar cells, consisting of CH₃NH₃PbI₃ as the light harvester and spiro-OMeTAD as the hole transport material. A power conversion efficiency of 11.2% under simulated AM 1.5 full sun illumination was measured. A 15% improvement in the short-circuit current density was obtained(More)
Emission characteristics of metal halide perovskites play a key role in the current widespread investigations into their potential uses in optoelectronics and photonics. However, a fundamental understanding of the molecular origin of the unusual blueshift of the bandgap and dual emission in perovskites is still lacking. In this direction, we investigated(More)