M I Bühler

Learn More
Synapsin I is a neuron-specific phosphoprotein localized to the cytoplasmic surface of synaptic vesicles. This phosphoprotein is a major substrate for cyclic AMP-dependent and calcium/calmodulin-dependent protein kinases. Its state of phosphorylation can be altered both in vivo and in vitro by a variety of physiological and pharmacological manipulations(More)
Synapsin I, a major neuron-specific phosphoprotein, is localized on the cytoplasmic surface of small synaptic vesicles to which it binds with high affinity. It contains a collagenase-resistant head domain and a collagenase-sensitive elongated tail domain. In the present study, the interaction between synapsin I and phospholipid vesicles has been(More)
Synapsin I is a major neuron-specific phosphoprotein that is specifically localized to the cytoplasmic surface of small synaptic vesicles. In the present study, the binding of synapsin I to small synaptic vesicles was characterized in detail. The binding of synapsin I was preserved when synaptic vesicles were solubilized and reconstituted in(More)
Synapsin I is a neuron-specific phosphoprotein that is concentrated in the presynaptic nerve terminal in association with the cytoplasmic surface of synaptic vesicles. It has been demonstrated to bundle F-actin in a phosphorylation-dependent manner in vitro, a property consistent with its proposed role in linking synaptic vesicles to the cytoskeleton and(More)
The synapsins are a family of closely related phosphoproteins (termed synapsins Ia, Ib, IIa and IIb) associated with synaptic vesicles and implicated in the short-term regulation of neurotransmitter release from nerve endings. During development, expression of the synapsins correlates temporally with synapse formation, but there has been no direct evidence(More)
Synapsin I is a neuron-specific phosphoprotein which is a substrate for cAMP- and Ca2+/calmodulin-dependent protein kinases. It is specifically localized to the cytoplasmic side of small synaptic vesicles. The interaction of synapsin I with the synaptic vesicle membrane is complex in nature, since it is modulated by phosphorylation and involves binding of(More)
Synapsin I and II are a family of synaptic vesicle-associated phosphoproteins involved in the short-term regulation of neurotransmitter release. In this review, we discuss a working model for the molecular mechanisms by which the synapsins act. We propose that synapsin I links synaptic vesicles to actin filaments in the presynaptic nerve terminal and that(More)
Generation of antibodies and direct protein sequencing were used to identify and characterize proteins associated with highly purified synaptic vesicles from rat brain. A protein doublet of low abundance of 119 and 124 kDa apparent molecular mass [synaptic vesicle-associated phosphoprotein with a molecular mass of 120 kDa (SVAPP-120)] was identified using(More)
Although progesterone is the maturation inducer in amphibians, it has been demonstrated that in Bufo arenarum oocytes resumed meiosis with no need of exogenous hormonal stimulus if derived of their enveloping follicle cells. This phenomenon, called spontaneous maturation, is quite rare in amphibians. In B. arenarum, spontaneous maturation took place only in(More)
Calcium is considered the most important second messenger at fertilization. Transient release from intracellular stores is modulated through both agonist-gated channels, IP₃Rs and RyRs, which can be found individually or together depending on the oocyte species. Using the four commonly used compounds (thimerosal, caffeine, heparin and ruthenium red), we(More)