Learn More
Broad spectrum of optical wireless communication is available, which can fulfill the requirements of high speed wireless communication. This is the basic advantage of optical wireless communication over conventional wireless communication technologies. The other important thing is the day by day decreasing size of wireless sensors with the advent of(More)
Carnobacterium species constitute a genus of Lactic Acid Bacteria (LAB) present in different ecological niches. The aim of this article is to summarize the knowledge about Carnobacterium maltaromaticum species at different microbiological levels such as taxonomy, isolation and identification, ecology, technological aspects and safety in dairy products.(More)
Within the lactic acid bacterium genus Carnobacterium, Carnobacterium maltaromaticum is one of the most frequently isolated species from natural environments and food. It potentially plays a major role in food product biopreservation. We report here on the 3.649-Mb chromosome sequence of C. maltaromaticum LMA 28, which was isolated from ripened soft cheese.(More)
Carnobacterium maltaromaticum is a lactic acid bacterium isolated from soft cheese. The objective of this work was to study its potential positive impact when used in cheese technology. Phenotypic and genotypic characterization of six strains of C. maltaromaticum showed that they belong to different phylogenetic groups. Although these strains lacked the(More)
Wireless Sensor Networks are included in today's important and evolving communication technologies. The size of sensors operating wirelessly decreases with the advent of advancement in device processing technologies like micro- and nano-electromechanical systems. This decrease in dimensions of sensors causes serious problem for battery storage capacity. We(More)
Carnobacterium maltaromaticum strains are widely found in food including fish, meat and some dairy products. Producing a malty/chocolate like aroma due to 3-methylbutanal from the catabolism of leucine is a general characteristic of this species. In this study, we investigated metabolic routes responsible for the biosynthesis of this flavor compound from(More)
In this study, we demonstrated the effect of different dissolved oxygen concentrations (DOC) on cell growth and intracellular biosynthesis of 3-methylbutanal from leucine catabolism in Carnobacterium maltaromaticum LMA 28 during batch culture. The maximum specific growth rate was obtained in culture when DOC was controlled at 50% of air saturation. The(More)
Branched chain aldehyde, 3-methylbutanal is associated as a key flavor compound with many hard and semi-hard cheese varieties. The presence and impact of this flavor compound in bread, meat, and certain beverages has been recently documented, however its presence and consequences regarding cheese flavor were not clearly reported. This paper gives an(More)
  • 1