Learn More
We describe a new fivefold symmetric approach to homonuclear recoupling in rotating solids that is based on rotor-synchronized, spin-lock rf irradiation of the type employed previously in MELODRAMA and C7 ~and their derivative sequences! for C– C recoupling. The fivefold sequence, like its sevenfold relatives, is g-encoded, and therefore exhibits a(More)
In this Communication, we demonstrate the use of deuteration together with back substitution of exchangeable protons as a means of attenuating the strong 1H-1H couplings that broaden 1H magic angle spinning (MAS) spectra of solids. The approach facilitates 15N-1H correlation experiments as well as experiments for the measurement of 1H-1H distances. The(More)
We explore the time-translational relation between one of the powder angles (gamma) and the sample rotation angle (omegart) in NMR spectroscopy of rotating solids. Averaging over the gamma powder angle is shown to be generally equivalent to a cross correlation of two periodic functions. This leads to a fundamental relation concerning the phases of NMR(More)
The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of(More)
We present a novel solid-state magic angle-spinning NMR method for measuring the NH(i)-NH(i+1) projection angle θ(i,i+1) in peptides. The experiment is applicable to uniformly (15)N-labeled peptides and is demonstrated on the chemotactic tripeptide N-formyl-l-Met-l-Leu-l-Phe. The projection angle θ(i,i+1) is directly related to the peptide(More)
  • 1