M. Hauer-Jensen

Learn More
Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI). Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a 'senolytic' pharmacological agent that can(More)
Induced pluripotent stem (iPS) cells are derived from reprogrammed somatic cells and are similar to embryonic stem (ES) cells in morphology, gene/protein expression, and pluripotency. In this study, we explored the potential of iPS cells to differentiate into alveolar Type II (ATII)-like epithelial cells. Analysis using quantitative real time polymerase(More)
Radiation-induced heart disease (RIHD) is a potentially severe side effect of radiotherapy of thoracic and chest wall tumors if all or part of the heart was included in the radiation field. RIHD presents clinically several years after irradiation and manifestations include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction(More)
To develop approaches to prophylaxis/protection, mitiga-tion and treatment of radiation injuries, appropriate models are needed that integrate the complex events that occur in the radiation-exposed organism. While the spectrum of agents in clinical use or preclinical development is limited, new research findings promise improvements in survival after(More)
Hyperhomocysteinemia (Hhe), linked to cardiovascular disease by epidemiological studies, may be an important factor in adverse cardiac remodeling in hypertension. Specifically, convergence of myocardial and vascular alterations promoted by Hhe and hypertension may exacerbate cardiac remodeling and myocardial dysfunction. We studied male spontaneously(More)
Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: O. Kustikova, advised on experimental design and provided experimental expertise A. Schambach, advised on experimental design and provided reagents Q. Fu, performed in vivo studies(More)
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is(More)
Among the eight naturally occurring vitamin E analogs, γ-tocotrienol (GT3) is a particularly potent radioprophylactic agent in vivo. Moreover, GT3 protects endothelial cells from radiation injury not only by virtue of its antioxidant properties but also by inhibition of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and by improving the availability of(More)
Radiation-induced heart disease (RIHD), characterized by accelerated atherosclerosis and adverse tissue remodeling, is a serious sequelae after radiotherapy of thoracic and chest wall tumors. Adverse cardiac remodeling in RIHD and other cardiac disorders is frequently accompanied by mast cell hyperplasia, suggesting that mast cells may affect the(More)
Systemic administration of recombinant thrombomodulin (TM) confers radiation protection partly by accelerating hematopoietic recovery. The uniquely potent radioprotector gamma tocotrienol (GT3), in addition to being a strong antioxidant, inhibits the enzyme hydroxy-methyl-glutaryl-coenzyme A reductase (HMGCR) and thereby likely modulates the expression of(More)