Learn More
We present the first measurement of the rate of Type Ia supernovae at high redshift. The result is derived using a large subset of data from the Supernova Cosmology Project. Three supernovae were discovered in a surveyed area of 1.7 square degrees. The survey spanned a ∼ 3 week baseline and used images with 3σ limiting magnitude of R ∼ 23. We present our(More)
We have developed a technique to systematically discover and study high-redshift supernovae that can be used to measure the cosmological parameters. We report here results based on the initial seven of >28 supernovae discovered to date in the high-redshift supernova search of the Supernova Cosmology Project. We find a dispersion in peak magnitudes of σ M B(More)
Introduction Methods by which radiation shielding is optimized need to be developed and materials of improved shielding characteristics identified and validated. The GCR are very penetrating and the energy absorbed by the astronaut behind the shield is nearly independent of shield composition and even the shield thickness. However, the mix of particles in(More)
Introduction: Protection against the hazards from exposure to ionizing radiation remains an unresolved issue in the Human Exploration and Development of Space (HEDS) enterprise [1]. The major uncertainty is the lack of data on biological response to galactic cosmic ray (GCR) exposures but even a full understanding of the physical interaction of GCR with(More)
The solar particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 GeV/amu with an energy power index of 2.5. These high charge and energy (HZE) ions of the iron-rich SPEs challenge conventional methods of SPE shield design and assessment of astronaut risks. Shield and risk assessments are evaluated using the(More)
The development of Mars for human activity will require the utilization of Martian materials in building habitats and working structures. One approach is to use polymer binders with regolith to form structural elements. Not only can useful composite materials be produced in this way but the radiation protection properties are also increased. This is(More)
Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model.(More)
  • 1