M. H. Haghbayan

Learn More
Dark Silicon denotes the phenomenon that, due to thermal and power constraints, the fraction of transistors that can operate at full frequency is decreasing with each technology generation. We propose a PID (Proportional Integral Derivative) controller based dynamic power management method that considers an upper bound on power consumption (called the(More)
In this paper, we propose a novel lifetime reliability-aware resource management approach for many-core architectures. The approach is based on hierarchical architecture, composed of a long-term runtime reliability analysis unit and a short-term runtime mapping unit. The former periodically analyses the aging status of the various processing units with(More)
Limitation on power budget in many-core systems leaves a fraction of on-chip resources inactive, referred to as dark silicon. In such systems, an efficient run-time application mapping approach can considerably enhance resource utilization and mitigate the dark silicon phenomenon. In this paper, we propose a dark silicon aware runtime application mapping(More)
Increasing dynamic workloads running on NoC-based many-core systems necessitates efficient runtime mapping strategies. With an unpredictable nature of application profiles, selecting a rational region to map an incoming application is an NP-hard problem in view of minimizing congestion and maximizing performance. In this paper, we propose a proactive region(More)
Arithmetic circuits require a verification process to prove that the gate level circuit is functionally equivalent to a high level specification or not. Furthermore, if two models are not equivalent, we need to automatically localize bugs and correct them with minimum user intervention. This paper presents a formal technique to verify and debug arithmetic(More)