M. Germin Nisha

Learn More
A gene encoding amylopullulanase (gt-apu) of the extremely thermophilic Geobacillus thermoleovorans NP33 was cloned and expressed in Escherichia coli. The gene has an open reading frame of 4,965 bp that encodes a protein of 1,655 amino acids with molecular mass of 182 kDa. The six conserved regions, characteristic of GH13 family, have been detected in(More)
In order to understand the role of N1 domain (1–257 aa) in the amylopullulanase (gt-apu) of the extremely thermophilic bacterium Geobacillus thermoleovorans NP33, N1 deletion construct (gt-apuΔN) has been generated and expressed in Escherichia coli. The truncated amylopullulanase (gt-apuΔN) exhibits similar pH and temperature optima like gt-apu, but(More)
Pullulan hydrolyzing enzymes are endoacting, classified based on the substrate specificity and hydrolysis products as pullulanases (type I and II) and pullulan hydrolases (type I, II and III). Pullulanases and pullulan hydrolase type I are produced by bacteria and archaea. Among bacteria, many mesophilic, thermophilic and hyperthermophilic bacteria produce(More)
Matrix metalloproteinase-13 (MMP-13) is the primary MMP involved in cartilage degradation through its particular ability to cleave type-II collagen. This protein is expressed by chondrocytes and synovial cells in human osteoarthritis and rheumatoid arthritis; hence, it is an attractive target for the treatment of arthritic diseases. Currently available(More)
This paper proposes a new neuro-fuzzy learning machine called extreme learning adaptive neuro-fuzzy inference system (ELANFIS) which can be applied to control of nonlinear systems. The new learning machine combines the learning capabilities of neural networks and the explicit knowledge of the fuzzy systems as in the case of conventional adaptive neuro-fuzzy(More)
The 3′-deleted amylopullulanase gene from the extreme thermophile Geobacillus thermoleovorans (Gt-apuΔC) was expressed extracellularly in Pichia pastoris under both methanol-inducible AOX1 and constitutive GAP promoters. The expression of the gene (Gt-apuΔC) was higher under GAP promoter (36.2 U ml−1, α-amylase; 33.5 U ml−1, pullulanase) than that under(More)
Virulence of Shigella is attributed to the genes presence in chromosome or in the megaplasmid. The apy gene which is located in the megaplasmid of Shigella species encodes for apyrase enzyme, a pathogenesis-associated enzyme causing mitochondrial damage and host cell death. In this study we constructed an apy mutant of Shigella flexneri by insertional(More)
  • 1