Learn More
Isolated reaction centers of photosystem II with an altered pigment content were obtained by chemical exchange of the native pheophytin a molecules with externally added 13(1)-deoxo-13(1)-hydroxy-pheophytin a. Judged from a comparison of the absorption spectra and photochemical activities of exchanged and control reaction centers, 70-80% of the pheophytin(More)
Methods of photoinduced Fourier transform infrared (FTIR) difference spectroscopy and circular dichroism were employed for studying features of pigment-protein interactions caused by replacement of isoleucine L177 by histidine in the reaction center (RC) of the site-directed mutant I(L177)H of Rhodobacter sphaeroides. A functional state of pigments in the(More)
Low temperature optical and photochemical properties of Rhodobacter sphaeroides (R-26) reaction centers, in which bacteriopheophytin a has been replaced by plant pheophytin a, are reported. Modified reaction centers preserve the ability for photoinduced electron transfer from the primary electron donor P to the primary quinone acceptor QA at 80K. The(More)
Progressive loss of the telomeric ends of chromosomes caused by the semi-conservative mechanism of DNA replication is an important timing mechanism which controls the number of cells doubling. Telomerase is an enzyme which elongates one chain of the telomeric DNA and compensates for its shortening during replication. Therefore, telomerase activity serves as(More)
The EPR spectrum of the triplet state of photosystem II reaction centers has been studied in the case of the singly reduced primary acceptor complex QAFe2+. It was demonstrated that the shape of the spectrum does not change much when the relaxation of the primary acceptor is accelerated and when magnetic interaction between the reduced quinone molecule QA(More)
  • 1