Learn More
Energization of mitochondria significantly alters the pattern of Ca2+ wave activity mediated by activation of the inositol (1,4,5) trisphosphate (IP3) receptor (IP3R) in Xenopus oocytes. The number of pulsatile foci is reduced and spiral Ca2+ waves are no longer observed. Rather, target patterns of Ca2+ release predominate, and when fragmented, fail to form(More)
Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this(More)
The inositol (1,4,5)-trisphosphate receptor (IPR) plays a crucial role in calcium dynamics in a wide range of cell types, and is often a central feature in quantitative models of calcium oscillations and waves. We review deterministic and stochastic mathematical models of the IPR, from the earliest ones of the 1970s and 1980s, to the most recent. The(More)
The inositol (1,4,5)-trisphosphate receptor (IPR) plays a crucial role in calcium dynamics in a wide range of cell types, and is often a central feature in quantitative models of calcium oscillations and waves. We compare three mathematical models of the IPR, fitting each of them to the same data set to determine ranges for the parameter values. Each of the(More)
We present a parallel numerical approach for intracellular calcium dynamics. Calcium is an important second messenger in cell communication. The dynamics of intracellular calcium is determined by the liberation and uptake by cellular stores as well as reactions with buffers. We develop models and numerical tools to study the liberation of calcium from the(More)
Intracellular Ca(2+) release is a versatile second messenger system. It is modeled here by reaction-diffusion equations for the free Ca(2+) and Ca(2+) buffers, with spatially discrete clusters of stochastic IP(3) receptor channels (IP(3)Rs) controlling the release of Ca(2+) from the endoplasmic reticulum. IP(3)Rs are activated by a small rise of the(More)
Adaptivity in space and time for the numerical simulation of stochastic and de-terministic equations for intracellular calcium dynamics is presented. The modeling of diffusion, reaction and membrane transport of calcium ions in cells leads to a system of reaction-diffusion equations. We describe the modulation of cytosolic and ER calcium concentrations(More)
  • 1