M. F. Delauw

Learn More
In Trypanosoma brucei, the activation of the variant-specific antigen gene AnTat 1.1 proceeds by the synthesis of an additional gene copy, the AnTat 1.1 ELC, which is transposed to a new location, the expression site, where it is transcribed. Using the AnTat 1.1 variant to infect flies, we investigated the fate of the AnTat 1.1 ELC during cyclic(More)
Polymorphism in restriction site cleavage (PstI, SphI, PvuII, HindIII) has been noticed in several occasions in the telomeric sequences harbouring trypanosome variant-specific antigen genes (1, 2, 3). This polymorphism has been further investigated and seems best interpreted as due to partial DNA modification in GC dinucleotides. The actively transcribed(More)
In the Trypanosoma b. brucei AnTat 1.1C clone, the gene coding for the variant-specific surface antigen is telomeric and appears as a hybrid sequence, partially modified by gene conversion. This conversion is very similar to that observed in another AnTat 1.1-expressor clone (AnTat 1.1B). This sequence is not activated by duplicative transposition, although(More)
Toxoplasma gondii is a ubiquitous parasite that infects nearly all warm-blooded animals. Developmental switching in T. gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for the disease propagation after alteration of the immune status of the carrier. The redifferentiation event is characterized by an over(More)
In African trypanosomes, only a very small fraction of the total repertoire of variable antigen types (VATs) is expressed by the metacyclic form. In Trypanosoma brucei stock EATRO 1125, the VATs AnTat 1.30 and 1.45 are reproducibly present in about 15% and 4% of the metacyclic population, respectively. The genes encoding the corresponding antigens or(More)
  • 1