Learn More
Faeces incorporation can alter the concentration patterns of stanols, stanones, Δ(5)-sterols and bile acids in soils and terrestrial sediments. A joint quantification of these substances would give robust and specific information about the faecal input. Therefore, a method was developed for their purification and determination via gas chromatography-mass(More)
A positive plant diversity to plant aboveground productivity relation has been shown to alter carbon and nitrogen fluxes in soils. Thus, most investigations focussed on the C- and N-input via litter fall, widely neglecting the importance of root exudation. As microbes, which are known to be important drivers of matter fluxes in soil, feed on these root(More)
Amino acid turnover in soil is an important element of terrestrial carbon and nitrogen cycles. This study accounts for their driver - the microbial metabolism - by tracing them via the unique isotopic approach of position-specific labeling. Three 14C isotopomers of alanine at five concentration levels combined with selective sterilization were used to(More)
The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We(More)
Biopores are hotspots of nutrient mobilisation and shortcuts for carbon (C) into subsoils. C processing relies on microbial community composition, which remains unexplored in subsoil biopores. Phospholipid fatty acids (PLFAs; markers for living microbial groups) and amino sugars (microbial necromass markers) were extracted from two subsoil depths (45–75 cm(More)
Natural forests in Ethiopia are frequently replaced by Cupressus lusitanica plantations, but little is known about consequences of this land use change for soil C and N dynamics. The objectives of the study were: (i) quantification of microbial incorporation of litter-derived C and N under field conditions, (ii) identification of forest management effects(More)
Root mucilage modulates soil-plant-water dynamics, but its interactions with microbial community functioning remain poorly understood. The aims of this study were to estimate (I) the impacts of mucilage and soil water content on the microbial community composition and (II) the mucilage consumption by individual microbial groups. C4 root mucilage from maize(More)
CO2 release from soil is commonly used to estimate toxicity of various substances on microorganisms. However, the mechanisms underlying persistent CO2 release from soil exposed to toxicants inhibiting microbial respiration, for example, sodium azide (NaN3) or heavy metals (Cd, Hg, Cu), remain unclear. To unravel these mechanisms, NaN3-amended soil was(More)
Although biogeochemical models designed to simulate carbon (C) and nitrogen (N) dynamics in high-latitude ecosystems incorporate extracellular parameters, molecular and biochemical adaptations of microorganisms to freezing remain unclear. This knowledge gap hampers estimations of the C balance and ecosystem feedback in high-latitude regions. To analyze(More)
Soils, paleosols and terrestrial sediments serve as archives for studying climate change, and represent important terrestrial carbon pools. Archive functioning relies on the chronological integrity of the respective units. Incorporation of younger organic matter (OM) e.g. by plant roots and associated microorganisms into deep subsoil and underlying soil(More)