M. Danielle McDonald

Learn More
Gulf toadfish were exposed to sublethal levels of copper (12.8 or 55.2 microM) for 30 days. Drinking in control fish averaged 1 ml kg(-1)h(-1) but exposure to 55.2 microM copper resulted in a complex biophasic pattern with initial (3 h and 1 day) inhibition of drinking rate, followed by an elevation of drinking rate from day 3 onwards. Drinking led to(More)
The possible presence of a urea transporter in the kidney of the gulf toadfish (Opsanus beta) and further characterization of the pulsatile facilitated transporter previously identified in its gills were investigated by comparing the extra-renal and renal handling of two urea analogues with the handling of urea. Toadfish were fitted with caudal artery and(More)
This study investigated whether urea transport mechanisms were present in the gills of the ammoniotelic plainfin midshipman (Porichthys notatus), similar to those recently documented in its ureotelic relative (family Batrachoididae), the gulf toadfish (Opsanus beta). Midshipmen were fitted with internal urinary and caudal artery catheters for repetitive(More)
In light of recent evidence that carrier-mediated transport of urea occurs in the mammalian kidney, this study examined the renal handling of urea in freshwater rainbow trout (Oncorhynchus mykiss). Fish were fitted with indwelling arterial and urinary bladder catheters for the measurement of plasma and urine composition (urea, Na+, Cl-, glucose, H2O),(More)
The gulf toadfish, Opsanus beta, is a marine teleost fish with an aglomerular kidney that is highly specialized to conserve water. Despite this adaptation, toadfish have the ability to survive when in dilute hypoosmotic seawater environments. The objectives of this study were to determine the joint role of the kidney and intestine in maintaining osmotic and(More)
Previous work has shown that pulsatile urea excretion at the gills of the gulf toadfish is due to periodic activation of a facilitated diffusion transport system with molecular and pharmacological similarity to the UT-A transport system of the mammalian kidney. In mammals, AVP and glucocorticoids are two important endocrine regulators of this system. The(More)
The objectives of this study were to characterize the pattern of pulsatile urea excretion in the gulf toadfish in the wake of exogenous cortisol loading and to determine the receptors involved in the regulation of this mechanism. Toadfish were fitted with indwelling arterial catheters and were infused with isosmotic NaCl for 48 h after which fish were(More)
Opsanus beta expresses a full complement of ornithine-urea cycle (OUC) enzymes and is facultatively ureotelic, reducing ammonia-N excretion and maintaining urea-N excretion under conditions of crowding/confinement. The switch to ureotelism is keyed by a modest rise in cortisol associated with a substantial increase in cytosolic glutamine synthetase for(More)
Laboratory rodents made hyperammonemic by infusing ammonia into the blood show symptoms of brain cell swelling and increased intracranial pressure. These symptoms could be caused in part by an increase in brain glutamine formed when brain glutamine synthetase (GS) naturally detoxifies ammonia to glutamine. Previous studies on the Gulf toadfish (Opsanus(More)
The objective of this study was to determine whether the pulsatile facilitated diffusion transport mechanism (tUT) found in the gills of the gulf toadfish (Opsanus beta) and the active secretion transporter thought to be present in its kidney could be saturated when faced with elevated plasma urea concentrations. Toadfish were infused with four consecutive(More)