M. Cristina Marchetti

Learn More
Lamellipodia are broad actin-based structures that define the protruding edge of many motile animal cells. Here we identify a Drosophila homolog of the p21-activated kinases (Paks) as a novel inhibitor of Rac-mediated lamellipodial formation: Pak3 overexpression mimics a loss of Rac activity, while Pak3 RNAi-mediated silencing enhances lamellipodial(More)
Cell-cell and cell-matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix (ECM). Here, we combine experiment and theory to reveal(More)
We study the dynamics of an isotropic solution of polar filaments coupled by molecular motors which generate relative motion of the filaments in two and three dimensions. We investigate the stability of the homogeneous state for constant motor concentration taking into account excluded volume and an estimate of entanglement. At low filament density the(More)
Engineering synthetic materials that mimic the remarkable complexity of living organisms is a fundamental challenge in science and technology. We studied the spatiotemporal patterns that emerge when an active nematic film of microtubules and molecular motors is encapsulated within a shape-changing lipid vesicle. Unlike in equilibrium systems, where defects(More)
We study numerically the phases and dynamics of a dense collection of self-propelled particles with soft repulsive interactions in two dimensions. The model is motivated by recent in vitro experiments on confluent monolayers of migratory epithelial and endothelial cells. The phase diagram exhibits a liquid phase with giant number fluctuations at low packing(More)
Cells generate mechanical stresses via the action of myosin motors on the actin cytoskeleton. Although the molecular origin of force generation is well understood, we currently lack an understanding of the regulation of force transmission at cellular length scales. Here, using 3T3 fibroblasts, we experimentally decouple the effects of substrate stiffness,(More)
Unicellular living organisms, such as bacteria and algae, propel themselves through a medium via cyclic strokes involving the motion of cilia and flagella. Dense populations of such "active particles" or "swimmers" exhibit a rich collective behavior at large scales. Starting with a minimal physical model of a stroke-averaged swimmer in a fluid, we derive a(More)
Motivated by recent simulations and by experiments on aggregation of gliding bacteria, we study a model of the collective dynamics of self-propelled hard rods on a substrate in two dimensions. The rods have finite size, interact via excluded volume, and their dynamics is overdamped by the interaction with the substrate. Starting from a microscopic model(More)
We simulate a model of self-propelled disks with soft repulsive interactions confined to a box in two dimensions. For small rotational diffusion rates, monodisperse disks spontaneously accumulate at the walls. At low densities, interaction forces between particles are strongly inhomogeneous, and a simple model predicts how these inhomogeneities alter the(More)