Learn More
In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential(More)
In situ chemical oxidation using permanganate is an approach to organic contaminant site remediation. Manganese dioxide particles are products of permanganate reactions. These particles have the potential to deposit in the subsurface and impact the flow-regime in/around permanganate injection, including the well screen, filter pack, and the surrounding(More)
For sites contaminated with chloroethene non-aqueous-phase liquids, designing a remediation system that couples in situ chemical oxidation (ISCO) with potassium permanganate (KMnO4) and microbial dechlorination may be complicated because of the potentially adverse effects of ISCO on anaerobic bioremediation processes. Therefore, one-dimensional column(More)
The application of in situ chemical oxidation for dense, nonaqueous phase liquid (DNAPL) remediation requires delivery of substantial levels of oxidant chemicals into the subsurface to degrade target DNAPLs and to satisfy natural oxidant demand. This practice can raise questions regarding changes in subsurface conditions, yet information regarding potential(More)
The goal of this study was to assess the oxidation of NAPL in soil, 30% of which were composed of chlorinated ethanes and ethenes, using catalyzed hydrogen peroxide (CHP), activated persulfate (AP), and H(2)O(2)-persulfate (HP) co-amendment systems. Citrate, a buffer and iron ligand, was amended to the treatment system to enhance oxidative treatment. Four(More)
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this(More)
Storage of contaminants in low permeability media (LPM) presents a great challenge for prediction of remediation effectiveness and efficiency. The reason lies in the contaminants' complex behaviors within heterogeneous media. Both interparticle and intraparticle diffusion contribute to the difficulty of precise site assessment. Sorption of(More)
This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to(More)
Particle filtration and cadmium sorption studies were performed at selected time points during reaction of potassium permanganate with trichloroethylene under varied reaction matrix conditions. The purpose of the studies was to determine the potential impact of manganese oxides particle generation, a by-product of the permanganate reaction, on subsurface(More)