M. Catherine Johnson

Learn More
The P21-activated kinases (PAK) are emerging antitumor therapeutic targets. In this paper, we describe the discovery of potent PAK inhibitors guided by structure-based drug design. In addition, the efflux of the pyrrolopyrazole series was effectively reduced by applying multiple medicinal chemistry strategies, leading to a series of PAK inhibitors that are(More)
Information from X-ray crystal structures were used to optimize the potency of a HTS hit in a Hsp90 competitive binding assay. A class of novel and potent small molecule Hsp90 inhibitors were thereby identified. Enantio-pure compounds 31 and 33 were potent in PGA-based competitive binding assay and inhibited proliferation of various human cancer cell lines(More)
Following the discovery of a novel series of phosphate-containing small molecular Pin1 inhibitors, the drug design strategy shifted to replacement of the phosphate group with an isostere with potential better pharmaceutical properties. The initial loss in potency of carboxylate analogs was likely due to weaker charge-charge interactions in the putative(More)
The design of potent Pin1 inhibitors has been challenging because its active site specifically recognizes a phospho-protein epitope. The de novo design of phosphate-based Pin1 inhibitors focusing on the phosphate recognition pocket and the successful replacement of the phosphate group with a carboxylate have been previously reported. The potency of the(More)
Pin1 is a member of the cis-trans peptidyl-prolyl isomerase family with potential anti-cancer therapeutic value. Here we report structure-based de novo design and optimization of novel Pin1 inhibitors. Without a viable lead from internal screenings, we designed a series of novel Pin1 inhibitors by interrogating and exploring a protein crystal structure of(More)
Phosphoinositide-dependent kinase-1 (PDK1) is a critical enzyme in the PI3K/AKT pathway and to the activation of AGC family protein kinases, including S6K, SGK, and PKC. Dysregulation of this pathway plays a key role in cancer cell growth, survival and tumor angiogenesis. As such, inhibitors of PDK1 offer the promise of a new therapeutic modality for cancer(More)
The structure-based design, chemical synthesis, and biological evaluation of novel MTAP substrates are described. These compounds incorporate various C5'-moieties and are shown to have different k(cat)/K(m) values compared with the natural MTAP substrate (MTA).
Structure/activity studies on atrial natriuretic peptide ANP (1-28) have highlighted three portions of the native molecule as necessary for its biological responses. We have linked these three regions and excised the remaining segments to produce a family of small analogues (less than half the size of the parent) which demonstrate the full range of ANP's(More)