Learn More
CONTEXT The perception of pain due to an acute injury or in clinical pain states undergoes substantial processing at supraspinal levels. Supraspinal, brain mechanisms are increasingly recognized as playing a major role in the representation and modulation of pain experience. These neural mechanisms may then contribute to interindividual variations and(More)
We studied single neurons in the frontal eye fields of awake macaque monkeys and compared their activity with the saccadic eye movements elicited by microstimulation at the sites of these neurons. Saccades could be elicited from electrical stimulation in the cortical gray matter of the frontal eye fields with currents as small as 10 microA. Low thresholds(More)
There is dual tactile innervation of the human hairy skin: in addition to fast-conducting myelinated afferent fibers, there is a system of slow-conducting unmyelinated (C) afferents that respond to light touch. In a unique patient lacking large myelinated afferents, we found that activation of C tactile (CT) afferents produced a faint sensation of pleasant(More)
Recent evidence demonstrating multiple regions of human cerebral cortex activated by pain has prompted speculation about their individual contributions to this complex experience. To differentiate cortical areas involved in pain affect, hypnotic suggestions were used to alter selectively the unpleasantness of noxious stimuli, without changing the perceived(More)
The existence of a posterolateral thalamic relay nucleus for pain and temperature sensation was postulated in 1911, on the basis of the stroke-induced analgesia and thermanaesthesia found paradoxically in patients with thalamic pain syndrome. Pain or temperature sensations can be evoked in humans by electrical stimulation in a vaguely defined region of the(More)
The representation of pain in the cerebral cortex is less well understood than that of any other sensory system. However, with the use of magnetic resonance imaging and positron emission tomography in humans, it has now been demonstrated that painful heat causes significant activation of the contralateral anterior cingulate, secondary somatosensory, and(More)
The neural mechanisms underlying hypnotic states and responses to hypnotic suggestions remain largely unknown and, to date, have been studied only with indirect methods. Here, the effects of hypnosis and suggestions to alter pain perception were investigated in hypnotizable subjects by using positron emission tomography (PET) measures of regional cerebral(More)
Pain is a diverse sensory and emotional experience that likely involves activation of numerous regions of the brain. Yet, many of these areas are also implicated in the processing of nonpainful somatosensory information. In order to better characterize the processing of pain within the human brain, activation produced by noxious stimuli was compared with(More)
Fibromyalgia is an intractable widespread pain disorder that is most frequently diagnosed in women. It has traditionally been classified as either a musculoskeletal disease or a psychological disorder. Accumulating evidence now suggests that fibromyalgia may be associated with CNS dysfunction. In this study, we investigate anatomical changes in the brain(More)
Touching warm and cool bars that are spatially interlaced produces a painful burning sensation resembling that caused by intense, noxious cold. We demonstrated previously that this thermal grill illusion can be explained as an unmasking phenomenon that reveals the central inhibition of pain by thermosensory integration. In order to localize this unmasking(More)