M. C. Thibaud

Learn More
Phosphorus, one of the essential elements for plants, is often a limiting nutrient because of its low availability and mobility in soils. Significant changes in plant morphology and biochemical processes are associated with phosphate (Pi) deficiency. However, the molecular bases of these responses to Pi deficiency are not thoroughly elucidated. Therefore, a(More)
Phosphate is a crucial and often limiting nutrient for plant growth. To obtain inorganic phosphate (P(i) ), which is very insoluble, and is heterogeneously distributed in the soil, plants have evolved a complex network of morphological and biochemical processes. These processes are controlled by a regulatory system triggered by P(i) concentration, not only(More)
The main source of phosphorus for plants is inorganic phosphate (Pi), which is characterized by its poor availability and low mobility. Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery(More)
Phosphate mobilization into the plant is a complex process requiring numerous transporters for absorption and translocation of this major nutrient. In the genome of Arabidopsis thaliana, nine closely related high affinity phosphate transporters have been identified but their specific roles remain unclear. Here we report the molecular, histological and(More)
Phosphate (Pi) is an essential element for plant development and metabolism. Due to its low availability and mobility in soils, it is often a limiting nutrient for their growth. This phenomenon is reinforced by the formation of insoluble complexes in the environment with many cations, affecting the solubility of both phosphate and associated ions. This(More)
A novel Arabidopsis DHDPS gene named DHDPS2 was found through identification of a mutant by promoter trapping. The mutation promotes a reduction of growth resulting from combination of a defect in lysine biosynthesis and accumulation of a toxic level of threonine or derived products. The mutant also modifies the amino acid composition issuing from the(More)
RNA transcript levels of Arabidopsis plants, infected by the rhizobacterium Pseudomonas thivervalensis (strain MLG45), and axenic control plants were compared using cDNA microarrays representing approximately 14 300 genes. The analysis revealed an increase of defence-related transcripts in the shoots of bacterized plants relative to control (axenic) plants.(More)
Pathogenesis-related (PR) protein-coding gene expression was studied in Arabidopsis thaliana grown in liquid medium in the presence of sugars (sucrose or glucose). PR protein transcripts accumulated in the presence of sugar in the medium. A potential effect linked to osmolarity changes induced by sugar addition in the medium was ruled out using osmotica(More)
BACKGROUND Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3',(2'),5'-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse(More)
 A model system based on the Arabidopsis thaliana (L.) Heynh. Ws ecotype and its naturally colonizing Pseudomonas thivervalensis rhizobacteria was defined. Pseudomonas strains colonizing A. thaliana were found to modify the root architecture either in vivo or in vitro. A gnotobiotic system using bacteria labelled with green fluorescent protein revealed that(More)