Learn More
In C. elegans, assembly of hypodermal hemidesmosome-like structures called fibrous organelles is temporally and spatially coordinated with the assembly of the muscle contractile apparatus, suggesting that signals are exchanged between these cell types to position fibrous organelles correctly. Myotactin, a protein recognized by monoclonal antibody MH46, is a(More)
C. Elegans has four muscle quadrants that are used for locomotion. Contraction is converted to locomotion because muscle cells are anchored to the cuticle (the outer covering of the worm) by a specialized basement membrane and hemidesmosome structures in the hypodermis (a cellular syncytium that covers the worm and secretes the cuticle). To study muscle(More)
In plants and Plasmodium falciparum, the synthesis of phosphatidylcholine requires the conversion of phosphoethanolamine to phosphocholine by phosphoethanolamine methyltransferase (PEAMT). This pathway differs from the metabolic route of phosphatidylcholine synthesis used in mammals and, on the basis of bioinformatics, was postulated to function in the(More)
We report the identification of several putative muscle-specific regulatory elements, and genes which are expressed preferentially in the muscle of the nematode Caenorhabditis elegans. We used computational pattern finding methods to identify cis-regulatory motifs from promoter regions of a set of genes known to express preferentially in muscle; each motif(More)
The development of nematicides targeting parasitic nematodes of animals and plants requires the identification of biochemical targets not found in host organisms. Recent studies suggest that Caenorhabditis elegans synthesizes phosphocholine through the action of PEAMT (S-adenosyl-L-methionine:phosphoethanolamine N-methyltransferases) that convert(More)
  • 1