Learn More
OBJECTIVE Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the(More)
beta cells sense glucose through its metabolism and the resulting increase in ATP, which subsequently stimulates insulin secretion. Uncoupling protein-2 (UCP2) mediates mitochondrial proton leak, decreasing ATP production. In the present study, we assessed UCP2's role in regulating insulin secretion. UCP2-deficient mice had higher islet ATP levels and(More)
The second messenger cAMP exerts powerful stimulatory effects on Ca(2+) signaling and insulin secretion in pancreatic beta-cells. Previous studies of beta-cells focused on protein kinase A (PKA) as a downstream effector of cAMP action. However, it is now apparent that cAMP also exerts its effects by binding to cAMP-regulated guanine nucleotide exchange(More)
Insulin secretion from pancreatic islet beta cells is acutely regulated by a complex interplay of metabolic and electrogenic events. The electrogenic mechanism regulating insulin secretion from beta cells is commonly referred to as the ATP-sensitive K+ (KATP) channel dependent pathway. Briefly, an increase in ATP and, perhaps more importantly, a decrease in(More)
Zinc is highly concentrated in pancreatic beta cells, is critical for normal insulin storage and may regulate glucagon secretion from alpha cells. Zinc transport family member 8 (ZnT8) is a zinc efflux transporter that is highly abundant in beta cells. Polymorphisms of ZnT8 (also known as SLC30A8) gene in man are associated with increased risk of type 2(More)
Glucagon-like peptide-1 (GLP-1) elicits a glucose-dependent insulin secretory effect via elevation of cAMP and activation of protein kinase A (PKA). GLP-1-mediated closure of ATP-sensitive potassium (K(ATP)) channels is involved in this process, although the mechanism of action of PKA on the K(ATP) channels is not fully understood. K(ATP) channel currents(More)
Abnormalities in insulin action are the characteristics of type 2 diabetes. Dominant-negative muscle-specific IGF-I receptor (MKR) mice exhibit elevated lipid levels at an early age and eventually develop type 2 diabetes. To evaluate the role of elevated lipids in the progression of the diabetic state, MKR mice were treated with WY14,643, a peroxisome(More)
OBJECTIVE The inability of pancreatic beta-cells to appropriately respond to glucose and secrete insulin are primary defects associated with beta-cell failure in type 2 diabetes. Mitochondrial dysfunction has been implicated as a key factor in the development of type 2 diabetes; however, a link between mitochondrial dysfunction and defective insulin(More)
Morphological changes that occur during pancreatic endocrine cell differentiation have been shown in rodent systems to be dependent on sequential alterations in transcription factor expression. However, similar data for humans have been limited. The aim of the present study was to provide a connection between pancreatic morphology, transcription factor gene(More)
Incretins are gastrointestinal hormones that act on the pancreas to potentiate glucose-stimulated insulin secretion. Despite the physiological importance of the enteroinsular axis, disruption of glucagon-like peptide (GLP)-1 action is associated with only modest glucose intolerance in GLP-1 receptor -/- (GLP-1R -/-) mice. We show here that GLP-1R -/- mice(More)